Suppr超能文献

基于药效团模型的 HIV-1 病毒逆转录酶抑制剂耐药突变体敏感性研究。

Proteochemometric modeling of the susceptibility of mutated variants of the HIV-1 virus to reverse transcriptase inhibitors.

机构信息

Department of Pharmaceutical Pharmacology, Uppsala University, Uppsala, Sweden.

出版信息

PLoS One. 2010 Dec 15;5(12):e14353. doi: 10.1371/journal.pone.0014353.

Abstract

BACKGROUND

Reverse transcriptase is a major drug target in highly active antiretroviral therapy (HAART) against HIV, which typically comprises two nucleoside/nucleotide analog reverse transcriptase (RT) inhibitors (NRTIs) in combination with a non-nucleoside RT inhibitor or a protease inhibitor. Unfortunately, HIV is capable of escaping the therapy by mutating into drug-resistant variants. Computational models that correlate HIV drug susceptibilities to the virus genotype and to drug molecular properties might facilitate selection of improved combination treatment regimens.

METHODOLOGY/PRINCIPAL FINDINGS: We applied our earlier developed proteochemometric modeling technology to analyze HIV mutant susceptibility to the eight clinically approved NRTIs. The data set used covered 728 virus variants genotyped for 240 sequence residues of the DNA polymerase domain of the RT; 165 of these residues contained mutations; totally the data-set covered susceptibility data for 4,495 inhibitor-RT combinations. Inhibitors and RT sequences were represented numerically by 3D-structural and physicochemical property descriptors, respectively. The two sets of descriptors and their derived cross-terms were correlated to the susceptibility data by partial least-squares projections to latent structures. The model identified more than ten frequently occurring mutations, each conferring more than two-fold loss of susceptibility for one or several NRTIs. The most deleterious mutations were K65R, Q151M, M184V/I, and T215Y/F, each of them decreasing susceptibility to most of the NRTIs. The predictive ability of the model was estimated by cross-validation and by external predictions for new HIV variants; both procedures showed very high correlation between the predicted and actual susceptibility values (Q2=0.89 and Q2ext=0.86). The model is available at www.hivdrc.org as a free web service for the prediction of the susceptibility to any of the clinically used NRTIs for any HIV-1 mutant variant.

CONCLUSIONS/SIGNIFICANCE: Our results give directions how to develop approaches for selection of genome-based optimum combination therapy for patients harboring mutated HIV variants.

摘要

背景

逆转录酶是高效抗逆转录病毒疗法(HAART)治疗 HIV 的主要药物靶点,HAART 通常包含两种核苷/核苷酸类似物逆转录酶(RT)抑制剂(NRTIs)与非核苷 RT 抑制剂或蛋白酶抑制剂联合使用。不幸的是,HIV 能够通过突变产生耐药变体从而逃避治疗。将 HIV 药物敏感性与病毒基因型和药物分子特性相关联的计算模型可能有助于选择改进的联合治疗方案。

方法/主要发现:我们应用早期开发的药物化学计量建模技术来分析 HIV 突变体对八种临床批准的 NRTIs 的敏感性。所使用的数据集涵盖了 728 种病毒变体,这些变体的 DNA 聚合酶结构域的 240 个序列残基进行了基因分型;其中 165 个残基含有突变;该数据集总共涵盖了 4495 个抑制剂-RT 组合的敏感性数据。抑制剂和 RT 序列分别用 3D 结构和物理化学性质描述符表示。这两组描述符及其衍生的交叉项通过偏最小二乘投影到潜在结构中与敏感性数据相关联。该模型确定了十多个常见的突变,每个突变使一种或几种 NRTIs 的敏感性降低了两倍以上。最具危害性的突变是 K65R、Q151M、M184V/I 和 T215Y/F,它们都使大多数 NRTIs 的敏感性降低。通过交叉验证和对新 HIV 变体的外部预测来估计模型的预测能力;这两种程序都显示出预测和实际敏感性值之间非常高的相关性(Q2=0.89 和 Q2ext=0.86)。该模型可在 www.hivdrc.org 上作为一个免费的网络服务获得,用于预测任何 HIV-1 突变体对任何临床使用的 NRTI 的敏感性。

结论/意义:我们的研究结果为开发基于基因组的最佳组合治疗方案提供了方向,以治疗携带突变 HIV 变体的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b17/3002298/a0b1eae05d15/pone.0014353.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验