Division of BioAnalytical Chemistry, VU University Amsterdam , De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
Center for Proteomics and Metabolomics, Leiden University Medical Center , P.O. Box 9600, 2300 RC Leiden, The Netherlands.
Anal Chem. 2015 Dec 1;87(23):11691-9. doi: 10.1021/acs.analchem.5b02366. Epub 2015 Nov 12.
The analysis of N- and O-glycopeptides remains challenging due to the microheterogeneity (different glycoforms attached to one glycosylation site) and macroheterogeneity (site occupancy) of the glycoprotein. Trypsin is by far the most commonly used protease in glycoproteomic studies; however, it often results in long peptides that can harbor more than one glycan which may hamper site identification. The use of unspecific proteases such as Pronase can largely overcome this problem by generating glycopeptides with a small peptide portion. While the resulting glycopeptides are very useful for tandem mass spectrometric investigation, the analysis with conventional 1D-LC-ESI-MS/MS approaches can lead to incomplete glycosylation coverage because of the very heterogeneous physicochemical properties of the glycopeptides depending on the peptide sequence as well as the size and charges of the glycan moiety. Here, we describe a universal workflow for site-specific N- and O-glycopeptide analysis of Pronase treated glycoproteins with integrated, sequential C18 reverse phase and porous graphitized carbon-LC-ESI-QTOF-MS/MS employing a combination of lower- and enhanced-energy collision-induced dissociation. The approach was evaluated on glycoprotein standards and also applied to investigate the glycosylation of human IgG3 providing details on the hitherto uncharacterized glycosylation site Asn392 of the CH3 domain. This analytical tool can be applied to a variety of glycoproteins for site-specific N- and O-glycopeptide analysis, resulting in a good glycopeptide coverage within a single sample run and, thus, requiring only small amounts of sample.
由于糖蛋白的微不均一性(一个糖基化位点上附着的不同糖型)和宏不均一性(位点占有率),N-和 O-糖肽的分析仍然具有挑战性。胰蛋白酶迄今为止是糖蛋白质组学研究中最常用的蛋白酶;然而,它通常会产生带有一个以上聚糖的长肽,这可能会阻碍位点的鉴定。使用非特异性蛋白酶,如蛋白酶,通过生成带有小肽部分的糖肽,可以在很大程度上克服这个问题。虽然得到的糖肽非常适合串联质谱研究,但由于糖肽的物理化学性质非常不均匀,取决于肽序列以及聚糖部分的大小和电荷,因此使用传统的 1D-LC-ESI-MS/MS 方法进行分析可能会导致不完全的糖基化覆盖。在这里,我们描述了一种通用的工作流程,用于对经 Pronase 处理的糖蛋白进行特定于位点的 N-和 O-糖肽分析,该工作流程结合了 C18 反相和多孔石墨化碳-LC-ESI-QTOF-MS/MS 的顺序分析,采用低能和增强能碰撞诱导解离的组合。该方法在糖蛋白标准品上进行了评估,也应用于研究人 IgG3 的糖基化,详细说明了 CH3 结构域中尚未表征的糖基化位点 Asn392。这种分析工具可应用于各种糖蛋白的特定于位点的 N-和 O-糖肽分析,在单个样品运行中即可获得良好的糖肽覆盖度,因此仅需要少量样品。