Boiko Nina, Kucher Volodymyr, Stockand James D
Department of Physiology, University of Texas Health Science Center, San Antonio, Texas
Department of Physiology, University of Texas Health Science Center, San Antonio, Texas.
Physiol Rep. 2015 Nov;3(11). doi: 10.14814/phy2.12600.
These studies test whether three disease-causing mutations in genes (SCNN1A and SCNN1G) encoding subunits of the epithelial Na(+) channel, ENaC, affect the biophysical and gating properties of this important renal ion channel. The S562P missense mutation in αENaC and the K106_S108delinsN mutation in γENaC are associated with pseudohypoaldosteronism type 1 (PHA1). The N530S missense mutation in γENaC causes Liddle's syndrome. Incorporation of S562P into αENaC and K106_S108N into γENaC resulted in significant decreases in macroscopic ENaC currents. Conversely, incorporation of N530S into γENaC increased macroscopic ENaC current. The S562P substitution resulted in a nonfunctional channel. The K106_S108N mutation produced a functional channel having a normal macroscopic current-voltage relation, there was a slight but significant decrease in unitary conductance and a marked decrease in single-channel open probability. The N530S substitution increased single-channel open probability having no effect on the macroscopic current-voltage relation or unitary conductance of the channel. These findings are consistent with mutation of residues at 562 in αENaC and 530 in γENaC, and a 3' splice site in SCNN1G (318-1 G→A; K106_108SdelinsN) resulting in aberrant ENaC activity due to changes in the biophysical and gating properties of the channel. Such changes likely contribute to the cellular mechanism underpinning the PHA1 and Liddle's syndrome caused by these mutations in ENaC subunits.
这些研究测试了编码上皮钠离子通道(ENaC)亚基的基因(SCNN1A和SCNN1G)中的三种致病突变是否会影响这种重要的肾脏离子通道的生物物理和门控特性。αENaC中的S562P错义突变和γENaC中的K106_S108delinsN突变与1型假性醛固酮增多症(PHA1)相关。γENaC中的N530S错义突变导致利德尔综合征。将S562P引入αENaC以及将K106_S108N引入γENaC导致宏观ENaC电流显著降低。相反,将N530S引入γENaC则增加了宏观ENaC电流。S562P替代导致通道无功能。K106_S108N突变产生了一个具有正常宏观电流 - 电压关系的功能性通道,单通道电导略有但显著降低,单通道开放概率显著降低。N530S替代增加了单通道开放概率,对通道的宏观电流 - 电压关系或单通道电导没有影响。这些发现与αENaC中562位残基、γENaC中530位残基的突变以及SCNN1G中的一个3'剪接位点(318 - 1 G→A;K106_108SdelinsN)一致,这些突变由于通道生物物理和门控特性的改变导致ENaC活性异常。这种改变可能有助于解释由这些ENaC亚基突变引起的PHA1和利德尔综合征的细胞机制。