Suppr超能文献

电子病历中识别非酒精性脂肪性肝病算法的开发与验证

Development and Validation of an Algorithm to Identify Nonalcoholic Fatty Liver Disease in the Electronic Medical Record.

作者信息

Corey Kathleen E, Kartoun Uri, Zheng Hui, Shaw Stanley Y

机构信息

Gastrointestinal Unit, Massachusetts General Hospital, 55 Fruit Street, Blake 4, Boston, MA, 02114, USA.

Harvard Medical School, Boston, MA, USA.

出版信息

Dig Dis Sci. 2016 Mar;61(3):913-9. doi: 10.1007/s10620-015-3952-x. Epub 2015 Nov 4.

Abstract

BACKGROUND AND AIMS

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Risk factors for NAFLD disease progression and liver-related outcomes remain incompletely understood due to the lack of computational identification methods. The present study sought to design a classification algorithm for NAFLD within the electronic medical record (EMR) for the development of large-scale longitudinal cohorts.

METHODS

We implemented feature selection using logistic regression with adaptive LASSO. A training set of 620 patients was randomly selected from the Research Patient Data Registry at Partners Healthcare. To assess a true diagnosis for NAFLD we performed chart reviews and considered either a documentation of a biopsy or a clinical diagnosis of NAFLD. We included in our model variables laboratory measurements, diagnosis codes, and concepts extracted from medical notes. Variables with P < 0.05 were included in the multivariable analysis.

RESULTS

The NAFLD classification algorithm included number of natural language mentions of NAFLD in the EMR, lifetime number of ICD-9 codes for NAFLD, and triglyceride level. This classification algorithm was superior to an algorithm using ICD-9 data alone with AUC of 0.85 versus 0.75 (P < 0.0001) and leads to the creation of a new independent cohort of 8458 individuals with a high probability for NAFLD.

CONCLUSIONS

The NAFLD classification algorithm is superior to ICD-9 billing data alone. This approach is simple to develop, deploy, and can be applied across different institutions to create EMR-based cohorts of individuals with NAFLD.

摘要

背景与目的

非酒精性脂肪性肝病(NAFLD)是全球慢性肝病最常见的病因。由于缺乏计算识别方法,NAFLD疾病进展及肝脏相关结局的危险因素仍未完全明确。本研究旨在设计一种用于电子病历(EMR)中NAFLD的分类算法,以建立大规模纵向队列。

方法

我们使用具有自适应LASSO的逻辑回归进行特征选择。从合作伙伴医疗保健公司的研究患者数据登记处随机选取620例患者作为训练集。为评估NAFLD的真实诊断,我们进行了病历审查,并将活检记录或NAFLD临床诊断纳入考虑。我们在模型中纳入了实验室测量值、诊断代码以及从医疗记录中提取的概念。P<0.05的变量纳入多变量分析。

结果

NAFLD分类算法包括EMR中NAFLD自然语言提及次数、NAFLD的ICD-9代码终生数量以及甘油三酯水平。该分类算法优于仅使用ICD-9数据的算法,AUC分别为0.85和0.75(P<0.0001),并导致创建了一个由8458名个体组成的新的独立队列,这些个体患NAFLD的可能性很高。

结论

NAFLD分类算法优于单独的ICD-9计费数据。这种方法易于开发、部署,可应用于不同机构,以创建基于EMR的NAFLD个体队列。

相似文献

引用本文的文献

10
Artificial Intelligence in Liver Diseases: Recent Advances.人工智能在肝脏疾病中的应用:最新进展。
Adv Ther. 2024 Mar;41(3):967-990. doi: 10.1007/s12325-024-02781-5. Epub 2024 Jan 29.

本文引用的文献

1
NAFLD: a multisystem disease.非酒精性脂肪性肝病:一种多系统疾病。
J Hepatol. 2015 Apr;62(1 Suppl):S47-64. doi: 10.1016/j.jhep.2014.12.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验