Spahn Philipp N, Hansen Anders H, Hansen Henning G, Arnsdorf Johnny, Kildegaard Helene F, Lewis Nathan E
Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, United States; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA 92093, United States.
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.
Metab Eng. 2016 Jan;33:52-66. doi: 10.1016/j.ymben.2015.10.007. Epub 2015 Oct 29.
Glycosylation is a critical quality attribute of most recombinant biotherapeutics. Consequently, drug development requires careful control of glycoforms to meet bioactivity and biosafety requirements. However, glycoengineering can be extraordinarily difficult given the complex reaction networks underlying glycosylation and the vast number of different glycans that can be synthesized in a host cell. Computational modeling offers an intriguing option to rationally guide glycoengineering, but the high parametric demands of current modeling approaches pose challenges to their application. Here we present a novel low-parameter approach to describe glycosylation using flux-balance and Markov chain modeling. The model recapitulates the biological complexity of glycosylation, but does not require user-provided kinetic information. We use this method to predict and experimentally validate glycoprofiles on EPO, IgG as well as the endogenous secretome following glycosyltransferase knock-out in different Chinese hamster ovary (CHO) cell lines. Our approach offers a flexible and user-friendly platform that can serve as a basis for powerful computational engineering efforts in mammalian cell factories for biopharmaceutical production.
糖基化是大多数重组生物治疗药物的关键质量属性。因此,药物开发需要仔细控制糖型,以满足生物活性和生物安全要求。然而,鉴于糖基化背后复杂的反应网络以及宿主细胞中可以合成的大量不同聚糖,糖基工程可能极其困难。计算建模为合理指导糖基工程提供了一个有趣的选择,但当前建模方法对参数的高要求给它们的应用带来了挑战。在这里,我们提出了一种新颖的低参数方法,使用通量平衡和马尔可夫链建模来描述糖基化。该模型概括了糖基化的生物学复杂性,但不需要用户提供动力学信息。我们使用这种方法来预测并通过实验验证在不同中国仓鼠卵巢(CHO)细胞系中糖基转移酶敲除后促红细胞生成素(EPO)、免疫球蛋白G(IgG)以及内源性分泌组的糖谱。我们的方法提供了一个灵活且用户友好的平台,可作为在用于生物制药生产的哺乳动物细胞工厂中进行强大计算工程努力的基础。