Department of Physics, University of California, San Diego, California 92093, United States.
Department of Pediatrics, University of California, San Diego, California 92093, United States.
Anal Chem. 2024 May 28;96(21):8332-8341. doi: 10.1021/acs.analchem.3c04992. Epub 2024 May 8.
Glycans are complex oligosaccharides that are involved in many diseases and biological processes. Unfortunately, current methods for determining glycan composition and structure (glycan sequencing) are laborious and require a high level of expertise. Here, we assess the feasibility of sequencing glycans based on their lectin binding fingerprints. By training a Boltzmann model on lectin binding data, we predict the approximate structures of 88 ± 7% of N-glycans and 87 ± 13% of O-glycans in our test set. We show that our model generalizes well to the pharmaceutically relevant case of Chinese hamster ovary (CHO) cell glycans. We also analyze the motif specificity of a wide array of lectins and identify the most and least predictive lectins and glycan features. These results could help streamline glycoprotein research and be of use to anyone using lectins for glycobiology.
聚糖是参与许多疾病和生物过程的复杂寡糖。不幸的是,目前用于确定聚糖组成和结构(聚糖测序)的方法既繁琐又需要高度的专业知识。在这里,我们评估了基于凝集素结合指纹图谱对聚糖进行测序的可行性。通过在凝集素结合数据上训练 Boltzmann 模型,我们预测了我们测试集中 88±7%的 N-聚糖和 87±13%的 O-聚糖的近似结构。我们表明,我们的模型很好地适用于具有重要药用价值的中国仓鼠卵巢 (CHO) 细胞聚糖的情况。我们还分析了广泛的凝集素的基序特异性,并确定了最具预测性和最不具预测性的凝集素和聚糖特征。这些结果可能有助于简化糖蛋白研究,并为任何使用凝集素进行糖生物学研究的人提供帮助。