Rana Manku, Yani Moheb S, Asavasopon Skulpan, Fisher Beth E, Kutch Jason J
Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California 90033.
Physical Therapy Department, Loma Linda University, Loma Linda, California 92350, and.
J Neurosci. 2015 Nov 4;35(44):14708-16. doi: 10.1523/JNEUROSCI.1971-15.2015.
The human brain is believed to simplify the control of the large number of muscles in the body by flexibly combining muscle coordination patterns, termed muscle synergies. However, the neural connectivity allowing the human brain to access and coordinate muscle synergies to accomplish functional tasks remains unknown. Here, we use a surprising pair of synergists in humans, the flexor hallucis longus (FHL, a toe flexor) and the anal sphincter, as a model that we show to be well suited in elucidating the neural connectivity underlying muscle synergy control. First, using electromyographic recordings, we demonstrate that voluntary FHL contraction is associated with synergistic anal sphincter contraction, but voluntary anal sphincter contraction occurs without FHL contraction. Second, using fMRI, we show that two important medial wall motor cortical regions emerge in relation to these tasks: one located more posteriorly that preferentially activates during voluntary FHL contraction and one located more anteriorly that activates during both voluntary FHL contraction as well as voluntary anal sphincter contraction. Third, using transcranial magnetic stimulation, we demonstrate that the anterior region is more likely to generate anal sphincter contraction than FHL contraction. Finally, using a repository resting-state fMRI dataset, we demonstrate that the anterior and posterior motor cortical regions have significantly different functional connectivity with distinct and distant brain regions. We conclude that specific motor cortical regions in humans provide access to different muscle synergies, which may allow distinct brain networks to coordinate muscle synergies during functional tasks.
How the human nervous system coordinates activity in a large number of muscles is a fundamental question. The brain and spinal cord are believed to simplify the control of muscles by grouping them into functional units called muscle synergies. Motor cortex is involved in activating muscle synergies; however, the motor cortical connections that regulate muscle synergy activation are unknown. Here, we studied pelvic floor muscle synergies to elucidate these connections in humans. Our experiments confirmed that distinct motor cortical regions activate different muscle synergies. These regions have different connectivity to distinct brain networks. Our results are an important step forward in understanding the cortical control of human muscles synergies, and may also have important clinical implications for understanding movement dysfunction.
人们认为人类大脑通过灵活组合称为肌肉协同作用的肌肉协调模式,来简化对身体中大量肌肉的控制。然而,使人类大脑能够获取并协调肌肉协同作用以完成功能任务的神经连接尚不清楚。在这里,我们将人类中一对令人惊讶的协同肌——拇长屈肌(FHL,一种脚趾屈肌)和肛门括约肌作为模型,我们证明该模型非常适合阐明肌肉协同控制背后的神经连接。首先,通过肌电图记录,我们证明拇长屈肌的自主收缩与肛门括约肌的协同收缩相关,但肛门括约肌的自主收缩发生时拇长屈肌并不收缩。其次,使用功能磁共振成像,我们表明与这些任务相关出现了两个重要的内侧壁运动皮层区域:一个位于更靠后的位置,在拇长屈肌自主收缩期间优先激活;另一个位于更靠前的位置,在拇长屈肌自主收缩以及肛门括约肌自主收缩期间均会激活。第三,使用经颅磁刺激,我们证明前部区域比拇长屈肌收缩更有可能引发肛门括约肌收缩。最后,使用一个静息态功能磁共振成像数据集,我们证明前部和后部运动皮层区域与不同且遥远的脑区具有显著不同的功能连接。我们得出结论,人类特定的运动皮层区域可实现对不同肌肉协同作用的获取,这可能使不同的脑网络在功能任务期间协调肌肉协同作用。
人类神经系统如何协调大量肌肉的活动是一个基本问题。大脑和脊髓被认为通过将肌肉分组为称为肌肉协同作用的功能单元来简化对肌肉的控制。运动皮层参与激活肌肉协同作用;然而,调节肌肉协同作用激活的运动皮层连接尚不清楚。在这里,我们研究盆底肌肉协同作用以阐明人类中的这些连接。我们的实验证实,不同的运动皮层区域激活不同的肌肉协同作用。这些区域与不同的脑网络具有不同的连接。我们的结果是在理解人类肌肉协同作用的皮层控制方面向前迈出的重要一步,并且对于理解运动功能障碍可能也具有重要的临床意义。