Kumar Arun, Starly Binil
Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA.
Biofabrication. 2015 Nov 5;7(4):044103. doi: 10.1088/1758-5090/7/4/044103.
Cellular biomanufacturing technologies are a critical link to the successful application of cell and scaffold based regenerative therapies, organs-on-chip devices, disease models and any products with living cells contained in them. How do we achieve production level quantities of the key ingredient-'the living cells' for all biofabrication processes, including bioprinting and biopatterning? We review key cell expansion based bioreactor operating principles and how 3D culture will play an important role in achieving production quantities of billions to even trillions of anchorage dependent cells. Furthermore, we highlight some of the challenges in the field of cellular biomanufacturing that must be addressed to achieve desired cellular yields while adhering to the key pillars of good manufacturing practices-safety, purity, stability, potency and identity. Biofabrication technologies are uniquely positioned to provide improved 3D culture surfaces for the industrialized production of living cells.
细胞生物制造技术是基于细胞和支架的再生疗法、芯片器官装置、疾病模型以及任何包含活细胞的产品成功应用的关键环节。对于包括生物打印和生物图案化在内的所有生物制造过程,我们如何实现关键成分——“活细胞”的生产规模数量呢?我们回顾了基于细胞扩增的生物反应器的关键操作原理,以及3D培养在实现数十亿甚至数万亿贴壁依赖性细胞的生产数量方面将如何发挥重要作用。此外,我们强调了细胞生物制造领域的一些挑战,要在坚持良好生产规范的关键支柱——安全性、纯度、稳定性、效力和特性的同时,实现所需的细胞产量,就必须解决这些挑战。生物制造技术具有独特的优势,能够为活细胞的工业化生产提供改进的3D培养表面。