Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
Singapore-MIT Alliance for Research and Technology, Critical Analytics for Manufacturing Personalised-medicine, 1 Create Way, Singapore, 138602, Singapore.
J Transl Med. 2024 Jul 2;22(1):614. doi: 10.1186/s12967-024-05373-7.
Mesenchymal stem and stromal cells (MSCs) hold potential to treat a broad range of clinical indications, but clinical translation has been limited to date due in part to challenges with batch-to-batch reproducibility of potential critical quality attributes (pCQAs) that can predict potency/efficacy. Here, we designed and implemented a microcarrier-microbioreactor approach to cell therapy manufacturing, specific to anchorage-dependent cells such as MSCs. We sought to assess whether increased control of the biochemical and biophysical environment had the potential to create product with consistent presentation and elevated expression of pCQAs relative to established manufacturing approaches in tissue culture polystyrene (TCPS) flasks. First, we evaluated total cell yield harvested from dissolvable, gelatin microcarriers within a microbioreactor cassette (Mobius Breez) or a flask control with matched initial cell seeding density and culture duration. Next, we identified 24 genes implicated in a therapeutic role for a specific motivating indication, acute respiratory distress syndrome (ARDS); expression of these genes served as our pCQAs for initial in vitro evaluation of product potency. We evaluated mRNA expression for three distinct donors to assess inter-donor repeatability, as well as for one donor in three distinct batches to assess within-donor, inter-batch variability. Finally, we assessed gene expression at the protein level for a subset of the panel to confirm successful translation. Our results indicated that MSCs expanded with this microcarrier-microbioreactor approach exhibited reasonable donor-to-donor repeatability and reliable batch-to-batch reproducibility of pCQAs. Interestingly, the baseline conditions of this microcarrier-microbioreactor approach also significantly improved expression of several key pCQAs at the gene and protein expression levels and reduced total media consumption relative to TCPS culture. This proof-of-concept study illustrates key benefits of this approach to therapeutic cell process development for MSCs and other anchorage-dependent cells that are candidates for cell therapies.
间充质干细胞和基质细胞(MSCs)具有治疗广泛临床适应症的潜力,但迄今为止,由于潜在关键质量属性(pCQAs)批间重现性的挑战,临床转化受到限制,这些 pCQAs 可预测效力/功效。在这里,我们设计并实施了一种针对依赖贴壁细胞(如 MSCs)的细胞治疗制造的微载体-微生物反应器方法。我们试图评估增加对生化和生物物理环境的控制是否有可能创造出与组织培养聚苯乙烯(TCPS)瓶中已建立的制造方法相比具有一致表现和提高 pCQAs 表达的产品。首先,我们评估了从可溶解的、明胶微载体中收获的总细胞产量,这些微载体位于微生物反应器盒(Mobius Breez)或瓶对照中,初始细胞接种密度和培养时间相同。接下来,我们确定了 24 个与特定治疗适应症(急性呼吸窘迫综合征(ARDS))相关的基因,这些基因的表达作为我们初始体外评估产品效力的 pCQAs。我们评估了三个不同供体的 mRNA 表达,以评估供体间的可重复性,以及一个供体在三个不同批次中的表达,以评估供体内、批次间的变异性。最后,我们评估了一组面板的蛋白水平上的基因表达,以确认成功的翻译。我们的结果表明,使用这种微载体-微生物反应器方法扩增的 MSCs 表现出合理的供体间重复性和 pCQAs 的可靠批间重现性。有趣的是,这种微载体-微生物反应器方法的基线条件还显著提高了几个关键 pCQAs 的基因和蛋白表达水平,并与 TCPS 培养相比,减少了总培养基消耗。这项概念验证研究说明了这种方法对 MSCs 和其他适合细胞治疗的依赖贴壁细胞的治疗性细胞工艺开发的关键优势。