Suppr超能文献

在频域中寻找图像显著特征的秘密。

Finding the Secret of Image Saliency in the Frequency Domain.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2015 Dec;37(12):2428-40. doi: 10.1109/TPAMI.2015.2424870.

Abstract

There are two sides to every story of visual saliency modeling in the frequency domain. On the one hand, image saliency can be effectively estimated by applying simple operations to the frequency spectrum. On the other hand, it is still unclear which part of the frequency spectrum contributes the most to popping-out targets and suppressing distractors. Toward this end, this paper tentatively explores the secret of image saliency in the frequency domain. From the results obtained in several qualitative and quantitative experiments, we find that the secret of visual saliency may mainly hide in the phases of intermediate frequencies. To explain this finding, we reinterpret the concept of discrete Fourier transform from the perspective of template-based contrast computation and thus develop several principles for designing the saliency detector in the frequency domain. Following these principles, we propose a novel approach to design the saliency detector under the assistance of prior knowledge obtained through both unsupervised and supervised learning processes. Experimental results on a public image benchmark show that the learned saliency detector outperforms 18 state-of-the-art approaches in predicting human fixations.

摘要

视觉显著度模型在频域中有两面性。一方面,可以通过对频谱进行简单的运算来有效地估计图像显著度。另一方面,目前还不清楚频谱的哪一部分对突出目标和抑制干扰物贡献最大。为此,本文初步探索了频域中图像显著度的秘密。通过对几个定性和定量实验的结果进行分析,我们发现视觉显著度的秘密可能主要隐藏在中频的相位中。为了解释这一发现,我们从基于模板的对比度计算的角度重新解释了离散傅里叶变换的概念,从而提出了一些设计频域显著度检测器的原则。根据这些原则,我们提出了一种在无监督和监督学习过程中获得的先验知识的辅助下设计显著度检测器的新方法。在一个公共图像基准上的实验结果表明,所学习的显著度检测器在预测人类注视点方面优于 18 种最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验