Suppr超能文献

立体视频的视觉注意建模:基准与计算模型。

Visual Attention Modeling for Stereoscopic Video: A Benchmark and Computational Model.

出版信息

IEEE Trans Image Process. 2017 Oct;26(10):4684-4696. doi: 10.1109/TIP.2017.2721112. Epub 2017 Jun 28.

Abstract

In this paper, we investigate the visual attention modeling for stereoscopic video from the following two aspects. First, we build one large-scale eye tracking database as the benchmark of visual attention modeling for stereoscopic video. The database includes 47 video sequences and their corresponding eye fixation data. Second, we propose a novel computational model of visual attention for stereoscopic video based on Gestalt theory. In the proposed model, we extract the low-level features, including luminance, color, texture, and depth, from discrete cosine transform coefficients, which are used to calculate feature contrast for the spatial saliency computation. The temporal saliency is calculated by the motion contrast from the planar and depth motion features in the stereoscopic video sequences. The final saliency is estimated by fusing the spatial and temporal saliency with uncertainty weighting, which is estimated by the laws of proximity, continuity, and common fate in Gestalt theory. Experimental results show that the proposed method outperforms the state-of-the-art stereoscopic video saliency detection models on our built large-scale eye tracking database and one other database (DML-ITRACK-3D).

摘要

在本文中,我们从以下两个方面研究了立体视频的视觉注意建模。首先,我们构建了一个大型眼动追踪数据库,作为立体视频视觉注意建模的基准。该数据库包含 47 个视频序列及其对应的眼动注视数据。其次,我们基于格式塔理论提出了一种新的立体视频视觉注意计算模型。在提出的模型中,我们从离散余弦变换系数中提取低水平特征,包括亮度、颜色、纹理和深度,用于计算空间显着性计算的特征对比度。时间显着性是通过立体视频序列中的平面和深度运动特征的运动对比度计算的。最后,通过融合空间和时间显着性以及不确定性加权来估计显着性,不确定性加权由格式塔理论中的接近、连续和共同命运定律估计。实验结果表明,与其他立体视频显着性检测模型相比,我们提出的方法在我们构建的大型眼动追踪数据库和另一个数据库(DML-ITRACK-3D)上表现更好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验