Suppr超能文献

条件独立图的贝叶斯估计改进了功能连接估计。

Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates.

作者信息

Hinne Max, Janssen Ronald J, Heskes Tom, van Gerven Marcel A J

机构信息

Radboud University, Institute for Computing and Information Sciences, Nijmegen, the Netherlands.

Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.

出版信息

PLoS Comput Biol. 2015 Nov 5;11(11):e1004534. doi: 10.1371/journal.pcbi.1004534. eCollection 2015 Nov.

Abstract

Functional connectivity concerns the correlated activity between neuronal populations in spatially segregated regions of the brain, which may be studied using functional magnetic resonance imaging (fMRI). This coupled activity is conveniently expressed using covariance, but this measure fails to distinguish between direct and indirect effects. A popular alternative that addresses this issue is partial correlation, which regresses out the signal of potentially confounding variables, resulting in a measure that reveals only direct connections. Importantly, provided the data are normally distributed, if two variables are conditionally independent given all other variables, their respective partial correlation is zero. In this paper, we propose a probabilistic generative model that allows us to estimate functional connectivity in terms of both partial correlations and a graph representing conditional independencies. Simulation results show that this methodology is able to outperform the graphical LASSO, which is the de facto standard for estimating partial correlations. Furthermore, we apply the model to estimate functional connectivity for twenty subjects using resting-state fMRI data. Results show that our model provides a richer representation of functional connectivity as compared to considering partial correlations alone. Finally, we demonstrate how our approach can be extended in several ways, for instance to achieve data fusion by informing the conditional independence graph with data from probabilistic tractography. As our Bayesian formulation of functional connectivity provides access to the posterior distribution instead of only to point estimates, we are able to quantify the uncertainty associated with our results. This reveals that while we are able to infer a clear backbone of connectivity in our empirical results, the data are not accurately described by simply looking at the mode of the distribution over connectivity. The implication of this is that deterministic alternatives may misjudge connectivity results by drawing conclusions from noisy and limited data.

摘要

功能连接涉及大脑空间上分离区域中神经元群体之间的相关活动,这可以使用功能磁共振成像(fMRI)进行研究。这种耦合活动用协方差来表示很方便,但该度量无法区分直接效应和间接效应。解决这个问题的一个常用替代方法是偏相关,它对潜在混杂变量的信号进行回归,从而得到一个仅揭示直接连接的度量。重要的是,假设数据呈正态分布,如果给定所有其他变量时两个变量条件独立,那么它们各自的偏相关为零。在本文中,我们提出了一种概率生成模型,使我们能够根据偏相关和表示条件独立性的图来估计功能连接。模拟结果表明,该方法能够优于图形套索法(graphical LASSO),后者是估计偏相关的事实上的标准方法。此外,我们应用该模型使用静息态fMRI数据估计20名受试者的功能连接。结果表明,与仅考虑偏相关相比,我们的模型提供了更丰富的功能连接表示。最后,我们展示了我们的方法可以通过多种方式进行扩展,例如通过用概率纤维束成像的数据告知条件独立性图来实现数据融合。由于我们对功能连接的贝叶斯公式提供了对后验分布的访问,而不仅仅是点估计,因此我们能够量化与我们结果相关的不确定性。这表明,虽然我们能够在实证结果中推断出清晰的连接主干,但仅通过查看连接分布的众数并不能准确描述数据。这意味着确定性方法可能会通过从有噪声和有限的数据中得出结论而误判连接结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e8/4634993/ddfb0e3f698f/pcbi.1004534.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验