Suppr超能文献

全脑有效连接的生成模型。

A generative model of whole-brain effective connectivity.

机构信息

Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland.

Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Department of Computer Science, ETH Zurich, 8032 Zurich, Switzerland.

出版信息

Neuroimage. 2018 Oct 1;179:505-529. doi: 10.1016/j.neuroimage.2018.05.058. Epub 2018 May 25.

Abstract

The development of whole-brain models that can infer effective (directed) connection strengths from fMRI data represents a central challenge for computational neuroimaging. A recently introduced generative model of fMRI data, regression dynamic causal modeling (rDCM), moves towards this goal as it scales gracefully to very large networks. However, large-scale networks with thousands of connections are difficult to interpret; additionally, one typically lacks information (data points per free parameter) for precise estimation of all model parameters. This paper introduces sparsity constraints to the variational Bayesian framework of rDCM as a solution to these problems in the domain of task-based fMRI. This sparse rDCM approach enables highly efficient effective connectivity analyses in whole-brain networks and does not require a priori assumptions about the network's connectivity structure but prunes fully (all-to-all) connected networks as part of model inversion. Following the derivation of the variational Bayesian update equations for sparse rDCM, we use both simulated and empirical data to assess the face validity of the model. In particular, we show that it is feasible to infer effective connection strengths from fMRI data using a network with more than 100 regions and 10,000 connections. This demonstrates the feasibility of whole-brain inference on effective connectivity from fMRI data - in single subjects and with a run-time below 1 min when using parallelized code. We anticipate that sparse rDCM may find useful application in connectomics and clinical neuromodeling - for example, for phenotyping individual patients in terms of whole-brain network structure.

摘要

从 fMRI 数据中推断有效(有向)连接强度的全脑模型的发展是计算神经影像学的一个核心挑战。最近引入的 fMRI 数据生成模型——回归因果动态建模(rDCM)——朝着这个目标发展,因为它可以优雅地扩展到非常大的网络。然而,具有数千个连接的大规模网络很难解释;此外,通常缺乏信息(每个自由参数的数据点)来精确估计所有模型参数。本文将稀疏约束引入 rDCM 的变分贝叶斯框架中,以解决基于任务的 fMRI 领域中这些问题。这种稀疏 rDCM 方法能够在全脑网络中进行高效的有效连接分析,并且不需要关于网络连接结构的先验假设,但作为模型反演的一部分,会修剪完全(全连接)连接的网络。在推导稀疏 rDCM 的变分贝叶斯更新方程之后,我们使用模拟和真实数据来评估模型的有效性。具体来说,我们表明,使用具有超过 100 个区域和 10000 个连接的网络从 fMRI 数据中推断有效连接强度是可行的。这表明从 fMRI 数据中推断全脑有效连接的可行性——在单个被试中,使用并行代码时运行时间不到 1 分钟。我们预计稀疏 rDCM 可能在连接组学和临床神经建模中找到有用的应用——例如,根据全脑网络结构对个体患者进行表型分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验