Suppr超能文献

小鼠滋养层干细胞的表观遗传与可塑性

Epigenesis and plasticity of mouse trophoblast stem cells.

作者信息

Prudhomme Julie, Morey Céline

机构信息

Laboratoire de Génétique Moléculaire Murine, Institut Pasteur, 75015, Paris, France.

CNRS, UMR7216 Epigenetics and Cell Fate, 75013, Paris, France.

出版信息

Cell Mol Life Sci. 2016 Feb;73(4):757-74. doi: 10.1007/s00018-015-2086-9. Epub 2015 Nov 5.

Abstract

The critical role of the placenta in supporting a healthy pregnancy is mostly ensured by the extraembryonic trophoblast lineage that acts as the interface between the maternal and the foetal compartments. The diverse trophoblast cell subtypes that form the placenta originate from a single layer of stem cells that emerge from the embryo when the earliest cell fate decisions are occurring. Recent studies show that these trophoblast stem cells exhibit extensive plasticity as they are capable of differentiating down multiple pathways and are easily converted into embryonic stem cells in vitro. In this review, we discuss current knowledge of the mechanisms and control of the epigenesis of mouse trophoblast stem cells through a comparison with the corresponding mechanisms in pluripotent embryonic stem cells. To illustrate some of the more striking manifestations of the epigenetic plasticity of mouse trophoblast stem cells, we discuss them within the context of two paradigms of epigenetic regulation of gene expression: the imprinted gene expression of specific loci and the process of X-chromosome inactivation.

摘要

胎盘在维持健康妊娠中发挥的关键作用主要由胚外滋养层谱系来确保,该谱系充当母体和胎儿区室之间的界面。构成胎盘的多种滋养层细胞亚型源自单层干细胞,这些干细胞在最早的细胞命运决定发生时从胚胎中产生。最近的研究表明,这些滋养层干细胞表现出广泛的可塑性,因为它们能够沿多条途径分化,并且在体外很容易转化为胚胎干细胞。在这篇综述中,我们通过与多能胚胎干细胞中的相应机制进行比较,讨论了小鼠滋养层干细胞表观遗传发生的机制和调控的当前知识。为了说明小鼠滋养层干细胞表观遗传可塑性的一些更显著表现,我们在基因表达表观遗传调控的两个范例的背景下进行讨论:特定基因座的印记基因表达和X染色体失活过程。

相似文献

1
Epigenesis and plasticity of mouse trophoblast stem cells.
Cell Mol Life Sci. 2016 Feb;73(4):757-74. doi: 10.1007/s00018-015-2086-9. Epub 2015 Nov 5.
4
Epigenetic signatures of trophoblast lineage and their biological functions.
Cells Dev. 2024 Sep;179:203934. doi: 10.1016/j.cdev.2024.203934. Epub 2024 Jun 26.
5
Derivation of trophoblast stem cells from naïve human pluripotent stem cells.
Elife. 2020 Feb 12;9:e52504. doi: 10.7554/eLife.52504.
6
Lineage conversion of murine extraembryonic trophoblast stem cells to pluripotent stem cells.
Mol Cell Biol. 2011 Apr;31(8):1748-56. doi: 10.1128/MCB.01047-10. Epub 2011 Feb 7.
7
Maternal DNA Methylation Regulates Early Trophoblast Development.
Dev Cell. 2016 Jan 25;36(2):152-63. doi: 10.1016/j.devcel.2015.12.027.
9
Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo.
Development. 2006 Nov;133(21):4203-10. doi: 10.1242/dev.02612. Epub 2006 Oct 4.
10
Fosl1 overexpression directly activates trophoblast-specific gene expression programs in embryonic stem cells.
Stem Cell Res. 2018 Jan;26:95-102. doi: 10.1016/j.scr.2017.12.004. Epub 2017 Dec 13.

引用本文的文献

1
Elevated high-mannose N-glycans hamper endometrial decidualization.
iScience. 2023 Oct 14;26(11):108170. doi: 10.1016/j.isci.2023.108170. eCollection 2023 Nov 17.
2
YY1 safeguard multidimensional epigenetic landscape associated with extended pluripotency.
Nucleic Acids Res. 2022 Nov 28;50(21):12019-12038. doi: 10.1093/nar/gkac230.
4
Integrating High-Throughput Approaches and Human Trophoblast Models to Decipher Mechanisms Underlying Early Human Placenta Development.
Front Cell Dev Biol. 2021 Jun 2;9:673065. doi: 10.3389/fcell.2021.673065. eCollection 2021.
5
Mice with hyper-long telomeres show less metabolic aging and longer lifespans.
Nat Commun. 2019 Oct 17;10(1):4723. doi: 10.1038/s41467-019-12664-x.
6
Single-step PCR-based genetic sex determination of rat tissues and cells.
Biotechniques. 2017 May 1;62(5):232-233. doi: 10.2144/000114548.

本文引用的文献

1
A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development.
Development. 2015 Jul 15;142(14):2425-30. doi: 10.1242/dev.121996. Epub 2015 Jul 2.
2
Deficiency of genomic reprogramming in trophoblast stem cells following nuclear transfer.
Cell Reprogram. 2015 Apr;17(2):115-23. doi: 10.1089/cell.2014.0073.
3
Escape from X inactivation varies in mouse tissues.
PLoS Genet. 2015 Mar 18;11(3):e1005079. doi: 10.1371/journal.pgen.1005079. eCollection 2015 Mar.
5
Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo.
Philos Trans R Soc Lond B Biol Sci. 2014 Dec 5;369(1657). doi: 10.1098/rstb.2013.0538.
6
Lineage-specific regulation of imprinted X inactivation in extraembryonic endoderm stem cells.
Epigenetics Chromatin. 2014 Jun 20;7:11. doi: 10.1186/1756-8935-7-11. eCollection 2014.
7
Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation.
Annu Rev Cell Dev Biol. 2014;30:561-80. doi: 10.1146/annurev-cellbio-101512-122415. Epub 2014 Jun 27.
8
Long noncoding RNAs in cell-fate programming and reprogramming.
Cell Stem Cell. 2014 Jun 5;14(6):752-61. doi: 10.1016/j.stem.2014.05.014.
9
Self-renewal and cell lineage differentiation strategies in human embryonic stem cells and induced pluripotent stem cells.
Expert Opin Biol Ther. 2014 Sep;14(9):1333-44. doi: 10.1517/14712598.2014.922533. Epub 2014 May 31.
10
A comparison of the histological structure of the placenta in experimental animals.
J Toxicol Pathol. 2014 Apr;27(1):11-8. doi: 10.1293/tox.2013-0060. Epub 2014 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验