Suppr超能文献

对高乙醇的适应揭示了复杂的进化途径。

Adaptation to High Ethanol Reveals Complex Evolutionary Pathways.

作者信息

Voordeckers Karin, Kominek Jacek, Das Anupam, Espinosa-Cantú Adriana, De Maeyer Dries, Arslan Ahmed, Van Pee Michiel, van der Zande Elisa, Meert Wim, Yang Yudi, Zhu Bo, Marchal Kathleen, DeLuna Alexander, Van Noort Vera, Jelier Rob, Verstrepen Kevin J

机构信息

VIB Laboratory for Systems Biology, Leuven, Belgium.

CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium.

出版信息

PLoS Genet. 2015 Nov 6;11(11):e1005635. doi: 10.1371/journal.pgen.1005635. eCollection 2015 Nov.

Abstract

Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts.

摘要

对高浓度乙醇的耐受性是微生物在生态和工业方面的一种相关表型,但这种复杂性状背后的分子机制在很大程度上仍不清楚。在这里,我们利用不同初始倍性的同基因酵母群体进行长期实验进化,以研究对乙醇浓度升高的适应性。在这个为期两年的进化实验中,对30多个进化群体和100多个分离出的适应克隆进行全基因组测序,揭示了从头单核苷酸突变、拷贝数变异、倍性变化、突变体表型和克隆干扰之间的复杂相互作用如何导致乙醇耐受性显著提高。尽管不同进化谱系中的具体突变有所不同,但应用一种新的计算流程PheNetic发现,许多突变靶向参与应激反应、细胞周期调控、DNA修复和呼吸作用的功能模块。对在未进化的乙醇敏感细胞中引入的选定突变的适应性效应进行测量,发现了几个以前未与乙醇耐受性相关的适应性突变,包括PRT1、VPS70和MEX67中的突变。有趣的是,最近在一种工业生物乙醇菌株中,VPS70的变异被确定为乙醇耐受性的一个数量性状位点。综上所述,我们的结果表明,与对其他一些应激的适应不同,对持续复杂和严重应激的适应涉及不同进化机制之间的相互作用。此外,我们的研究揭示了参与乙醇抗性的功能模块,并鉴定了几个有助于提高工业酵母乙醇耐受性的突变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5786/4636377/3d0027bc80bb/pgen.1005635.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验