Suppr超能文献

锌指蛋白36(ZFP36)对肿瘤坏死因子(TNF)的负反馈控制受丝裂原活化蛋白激酶磷酸酶双特异性磷酸酶1(DUSP1)的限制:糖皮质激素调节的意义

Negative Feed-forward Control of Tumor Necrosis Factor (TNF) by Tristetraprolin (ZFP36) Is Limited by the Mitogen-activated Protein Kinase Phosphatase, Dual-specificity Phosphatase 1 (DUSP1): IMPLICATIONS FOR REGULATION BY GLUCOCORTICOIDS.

作者信息

Shah Suharsh, Mostafa Mahmoud M, McWhae Andrew, Traves Suzanne L, Newton Robert

机构信息

From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.

From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada

出版信息

J Biol Chem. 2016 Jan 1;291(1):110-25. doi: 10.1074/jbc.M115.697599. Epub 2015 Nov 6.

Abstract

TNF is central to inflammation and may play a role in the pathogenesis of asthma. The 3'-untranslated region of the TNF transcript contains AU-rich elements (AREs) that are targeted by the RNA-binding protein, tristetraprolin (also known as zinc finger protein 36 (ZFP36)), which is itself up-regulated by inflammatory stimuli, to promote mRNA degradation. Using primary human bronchial epithelial and pulmonary epithelial A549 cells, we confirm that interleukin-1β (IL1B) induces expression of dual-specificity phosphatase 1 (DUSP1), ZFP36, and TNF. Whereas IL1B-induced DUSP1 is involved in feedback control of MAPK pathways, ZFP36 exerts negative (incoherent) feed-forward control of TNF mRNA and protein expression. DUSP1 silencing increased IL1B-induced ZFP36 expression at 2 h and profoundly repressed TNF mRNA at 6 h. This was partly due to increased TNF mRNA degradation, an effect that was reduced by ZFP36 silencing. This confirms a regulatory network, whereby DUSP1-dependent negative feedback control reduces feed-forward control by ZFP36. Conversely, whereas DUSP1 overexpression and inhibition of MAPKs prevented IL1B-induced expression of ZFP36, this was associated with increased TNF mRNA expression at 6 h, an effect that was predominantly due to elevated transcription. This points to MAPK-dependent feed-forward control of TNF involving ZFP36-dependent and -independent mechanisms. In terms of repression by dexamethasone, neither silencing of DUSP1, silencing of ZFP36, nor silencing of both together prevented the repression of IL1B-induced TNF expression, thereby demonstrating the need for further repressive mechanisms by anti-inflammatory glucocorticoids. In summary, these data illustrate why understanding the competing effects of feedback and feed-forward control is relevant to the development of novel anti-inflammatory therapies.

摘要

肿瘤坏死因子(TNF)是炎症的核心因素,可能在哮喘的发病机制中起作用。TNF转录本的3'非翻译区包含富含AU元件(AREs),这些元件是RNA结合蛋白Tristetraprolin(也称为锌指蛋白36(ZFP36))的作用靶点,该蛋白本身会因炎症刺激而上调,以促进mRNA降解。我们使用原代人支气管上皮细胞和肺上皮A549细胞证实,白细胞介素-1β(IL1B)可诱导双特异性磷酸酶1(DUSP1)、ZFP36和TNF的表达。虽然IL1B诱导的DUSP1参与丝裂原活化蛋白激酶(MAPK)途径的反馈控制,但ZFP36对TNF mRNA和蛋白表达发挥负向(非相干)前馈控制作用。DUSP1沉默在2小时时增加了IL1B诱导的ZFP36表达,并在6小时时显著抑制了TNF mRNA。这部分是由于TNF mRNA降解增加,而ZFP36沉默可减弱这种效应。这证实了一个调节网络,即依赖DUSP1的负反馈控制降低了ZFP36的前馈控制。相反,虽然DUSP1过表达和MAPK抑制可阻止IL1B诱导的ZFP36表达,但这与6小时时TNF mRNA表达增加有关,这种效应主要是由于转录升高。这表明MAPK对TNF的前馈控制涉及ZFP36依赖和非依赖机制。就地塞米松的抑制作用而言,DUSP1沉默、ZFP36沉默或两者同时沉默均不能阻止地塞米松对IL1B诱导的TNF表达的抑制,从而表明抗炎糖皮质激素需要进一步的抑制机制。总之,这些数据说明了为什么理解反馈和前馈控制的竞争效应与新型抗炎疗法的开发相关。

相似文献

3
DUSP1 Maintains IRF1 and Leads to Increased Expression of IRF1-dependent Genes: A MECHANISM PROMOTING GLUCOCORTICOID INSENSITIVITY.
J Biol Chem. 2016 Oct 7;291(41):21802-21816. doi: 10.1074/jbc.M116.728964. Epub 2016 Aug 22.
6
Temporal regulation of cytokine mRNA expression by tristetraprolin: dynamic control by p38 MAPK and MKP-1.
Am J Physiol Lung Cell Mol Physiol. 2015 May 1;308(9):L973-80. doi: 10.1152/ajplung.00219.2014. Epub 2015 Feb 27.
10
Downregulation of the glucocorticoid-induced leucine zipper (GILZ) promotes vascular inflammation.
Atherosclerosis. 2014 Jun;234(2):391-400. doi: 10.1016/j.atherosclerosis.2014.03.028. Epub 2014 Apr 5.

引用本文的文献

1
Global analysis of the abundance of AU-rich mRNAs in response to glucocorticoid treatment.
Sci Rep. 2024 Jan 9;14(1):913. doi: 10.1038/s41598-024-51301-6.
2
Cellular and transcriptome signatures unveiled by single-cell RNA-Seq following infection of murine splenocytes with .
Front Immunol. 2023 Dec 8;14:1296580. doi: 10.3389/fimmu.2023.1296580. eCollection 2023.
3
Biophysically Interpretable Inference of Cell Types from Multimodal Sequencing Data.
bioRxiv. 2023 Sep 19:2023.09.17.558131. doi: 10.1101/2023.09.17.558131.
4
Post-transcriptional checkpoints in autoimmunity.
Nat Rev Rheumatol. 2023 Aug;19(8):486-502. doi: 10.1038/s41584-023-00980-y. Epub 2023 Jun 13.
5
FAM3D inhibits gluconeogenesis in high glucose environment via DUSP1/ZFP36/SIK1 axis.
Kaohsiung J Med Sci. 2023 Mar;39(3):254-265. doi: 10.1002/kjm2.12633. Epub 2022 Dec 16.
7
Differential Effects of Toll-Like Receptor Activation and Differential Mediation by MAP Kinases of Immune Responses in Microglial Cells.
Cell Mol Neurobiol. 2022 Nov;42(8):2655-2671. doi: 10.1007/s10571-021-01127-x. Epub 2021 Jul 23.
9
MicroRNA-423 Drug Resistance and Proliferation of Breast Cancer Cells by Targeting ZFP36.
Onco Targets Ther. 2020 Jan 24;13:769-782. doi: 10.2147/OTT.S217745. eCollection 2020.
10
Network Topologies That Can Achieve Dual Function of Adaptation and Noise Attenuation.
Cell Syst. 2019 Sep 25;9(3):271-285.e7. doi: 10.1016/j.cels.2019.08.006. Epub 2019 Sep 18.

本文引用的文献

1
Dual-Specificity Phosphatase 1 and Tristetraprolin Cooperate To Regulate Macrophage Responses to Lipopolysaccharide.
J Immunol. 2015 Jul 1;195(1):277-88. doi: 10.4049/jimmunol.1402830. Epub 2015 May 27.
2
Temporal regulation of cytokine mRNA expression by tristetraprolin: dynamic control by p38 MAPK and MKP-1.
Am J Physiol Lung Cell Mol Physiol. 2015 May 1;308(9):L973-80. doi: 10.1152/ajplung.00219.2014. Epub 2015 Feb 27.
3
Tristetraprolin (TTP) coordinately regulates primary and secondary cellular responses to proinflammatory stimuli.
J Leukoc Biol. 2015 Apr;97(4):723-36. doi: 10.1189/jlb.3A0214-106R. Epub 2015 Feb 5.
4
Tristetraprolin is involved in the glucocorticoid-mediated interleukin 8 repression.
Int Immunopharmacol. 2014 Oct;22(2):480-5. doi: 10.1016/j.intimp.2014.07.031. Epub 2014 Aug 8.
6
Mitogen-activated protein kinases in innate immunity.
Nat Rev Immunol. 2013 Sep;13(9):679-92. doi: 10.1038/nri3495. Epub 2013 Aug 19.
7
Anti-inflammatory glucocorticoids: changing concepts.
Eur J Pharmacol. 2014 Feb 5;724:231-6. doi: 10.1016/j.ejphar.2013.05.035. Epub 2013 Jun 7.
8
Reflections on the history of pre-mRNA processing and highlights of current knowledge: a unified picture.
RNA. 2013 Apr;19(4):443-60. doi: 10.1261/rna.038596.113. Epub 2013 Feb 25.
10
Regulation of tristetraprolin expression by mitogen-activated protein kinase phosphatase-1.
APMIS. 2012 Dec;120(12):988-99. doi: 10.1111/j.1600-0463.2012.02927.x. Epub 2012 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验