Suppr超能文献

红细胞中乙二醛生成草酸盐的过程。

Oxalate Formation From Glyoxal in Erythrocytes.

作者信息

Knight John, Wood Kyle D, Lange Jessica N, Assimos Dean G, Holmes Ross P

机构信息

Department of Urology, University of Alabama at Birmingham, Birmingham, AL.

Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC.

出版信息

Urology. 2016 Feb;88:226.e11-5. doi: 10.1016/j.urology.2015.10.014. Epub 2015 Nov 4.

Abstract

OBJECTIVE

To determine whether glyoxal can be converted to oxalate in human erythrocytes. Glyoxal synthesis is elevated in diabetes, cardiovascular disease, and other diseases with significant oxidative stress. Erythrocytes are a good model system for such studies as they lack intracellular organelles and have a simplified metabolism.

MATERIALS AND METHODS

Erythrocytes were isolated from healthy volunteers and incubated with varying concentrations of glyoxal for different amounts of time. Metabolic inhibitors were used to help characterize metabolic steps. The conversion of glyoxal to glycolate and oxalate in the incubation medium was determined by chromatographic techniques.

RESULTS

The bulk of the glyoxal was converted to glycolate, but ~1% was converted to oxalate. Inclusion of the pro-oxidant, menadione, in the medium increased oxalate synthesis, and the inclusion of disulfiram, an inhibitor of aldehyde dehydrogenase activity, decreased oxalate synthesis.

CONCLUSION

The glyoxalase system, which utilizes glutathione as a cofactor, converts the majority of the glyoxal taken up by erythrocytes to glycolate, but a small portion is converted to oxalate. A reduction in intracellular glutathione increases oxalate synthesis and a decrease in aldehyde dehydrogenase activity lowers oxalate synthesis and suggests that glyoxylate is an intermediate. Thus, oxidative stress in tissues could potentially increase oxalate synthesis.

摘要

目的

确定乙二醛在人体红细胞中是否能转化为草酸盐。在糖尿病、心血管疾病及其他具有显著氧化应激的疾病中,乙二醛的合成会增加。红细胞是进行此类研究的良好模型系统,因为它们缺乏细胞内细胞器且代谢简化。

材料与方法

从健康志愿者中分离出红细胞,并与不同浓度的乙二醛在不同时间进行孵育。使用代谢抑制剂来帮助确定代谢步骤。通过色谱技术测定孵育培养基中乙二醛向乙醇酸和草酸盐的转化。

结果

大部分乙二醛转化为乙醇酸,但约1%转化为草酸盐。培养基中加入促氧化剂甲萘醌会增加草酸盐合成,而加入醛脱氢酶活性抑制剂双硫仑会降低草酸盐合成。

结论

以谷胱甘肽作为辅因子的乙二醛酶系统将红细胞摄取的大部分乙二醛转化为乙醇酸,但一小部分转化为草酸盐。细胞内谷胱甘肽减少会增加草酸盐合成,醛脱氢酶活性降低会降低草酸盐合成,这表明乙醛酸是中间产物。因此,组织中的氧化应激可能会增加草酸盐合成。

相似文献

1
Oxalate Formation From Glyoxal in Erythrocytes.
Urology. 2016 Feb;88:226.e11-5. doi: 10.1016/j.urology.2015.10.014. Epub 2015 Nov 4.
2
Pathways of hepatic oxalate synthesis and their regulation.
Am J Physiol. 1997 Jan;272(1 Pt 1):C289-94. doi: 10.1152/ajpcell.1997.272.1.C289.
3
Glycolate and glyoxylate metabolism in HepG2 cells.
Am J Physiol Cell Physiol. 2004 Nov;287(5):C1359-65. doi: 10.1152/ajpcell.00238.2004. Epub 2004 Jul 7.
4
Glycolate metabolism by Hep G2 cells.
J Am Soc Nephrol. 1999 Nov;10 Suppl 14:S345-7.
5
Importance of oxalate precursors for oxalate metabolism in rats.
J Am Soc Nephrol. 1999 Nov;10 Suppl 14:S341-4.
7
Generation of a GLO-2 deficient mouse reveals its effects on liver carbonyl and glutathione levels.
Biochem Biophys Rep. 2021 Sep 20;28:101138. doi: 10.1016/j.bbrep.2021.101138. eCollection 2021 Dec.
8
The formation of oxalate from glycolate in rat and human liver.
Biochim Biophys Acta. 1990 Oct 12;1036(1):24-33. doi: 10.1016/0304-4165(90)90209-f.
10
Glyoxylate is a substrate of the sulfate-oxalate exchanger, sat-1, and increases its expression in HepG2 cells.
J Hepatol. 2011 Mar;54(3):513-20. doi: 10.1016/j.jhep.2010.07.036. Epub 2010 Sep 19.

引用本文的文献

1
Oxalate (dys)Metabolism: Person-to-Person Variability, Kidney and Cardiometabolic Toxicity.
Genes (Basel). 2023 Aug 29;14(9):1719. doi: 10.3390/genes14091719.
2
Oxalate homeostasis.
Nat Rev Nephrol. 2023 Feb;19(2):123-138. doi: 10.1038/s41581-022-00643-3. Epub 2022 Nov 3.
3
Enzymatic and non-enzymatic conversion of cystamine to thiotaurine and taurine.
Biochim Biophys Acta Gen Subj. 2022 Dec;1866(12):130225. doi: 10.1016/j.bbagen.2022.130225. Epub 2022 Aug 18.
5
Generation of a GLO-2 deficient mouse reveals its effects on liver carbonyl and glutathione levels.
Biochem Biophys Rep. 2021 Sep 20;28:101138. doi: 10.1016/j.bbrep.2021.101138. eCollection 2021 Dec.
6
Contribution of Dietary Oxalate and Oxalate Precursors to Urinary Oxalate Excretion.
Nutrients. 2020 Dec 28;13(1):62. doi: 10.3390/nu13010062.
7
Nicotine exposure increases markers of oxidant stress in stored red blood cells from healthy donor volunteers.
Transfusion. 2020 Jun;60(6):1160-1174. doi: 10.1111/trf.15812. Epub 2020 May 8.
8
Red blood cell metabolism in Rhesus macaques and humans: comparative biology of blood storage.
Haematologica. 2020 Aug;105(8):2174-2186. doi: 10.3324/haematol.2019.229930. Epub 2019 Nov 7.
9
Oxalate, inflammasome, and progression of kidney disease.
Curr Opin Nephrol Hypertens. 2016 Jul;25(4):363-71. doi: 10.1097/MNH.0000000000000229.

本文引用的文献

1
Assay of methylglyoxal and glyoxal and control of peroxidase interference.
Biochem Soc Trans. 2014 Apr;42(2):504-10. doi: 10.1042/BST20140009.
3
The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy.
Diabetes. 2014 Jan;63(1):50-2. doi: 10.2337/db13-1606.
4
Aquaglyceroporins: generalized metalloid channels.
Biochim Biophys Acta. 2014 May;1840(5):1583-91. doi: 10.1016/j.bbagen.2013.11.021. Epub 2013 Nov 27.
5
Primary hyperoxaluria.
N Engl J Med. 2013 Nov 28;369(22):2163. doi: 10.1056/NEJMc1311606.
7
Glyoxal formation and its role in endogenous oxalate synthesis.
Adv Urol. 2012;2012:819202. doi: 10.1155/2012/819202. Epub 2012 Apr 8.
8
Primary hyperoxalurias: disorders of glyoxylate detoxification.
Biochim Biophys Acta. 2012 Sep;1822(9):1453-64. doi: 10.1016/j.bbadis.2012.03.004. Epub 2012 Mar 14.
9
Metabolism of primed, constant infusions of [1,2-¹³C₂] glycine and [1-¹³C₁] phenylalanine to urinary oxalate.
Metabolism. 2011 Jul;60(7):950-6. doi: 10.1016/j.metabol.2010.09.002. Epub 2010 Oct 30.
10
Metabolism of fructose to oxalate and glycolate.
Horm Metab Res. 2010 Nov;42(12):868-73. doi: 10.1055/s-0030-1265145. Epub 2010 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验