Suppr超能文献

离线模拟激发洞察力:一种用于高效机器人任务学习的神经动力学方法。

Off-line simulation inspires insight: A neurodynamics approach to efficient robot task learning.

作者信息

Sousa Emanuel, Erlhagen Wolfram, Ferreira Flora, Bicho Estela

机构信息

Center Algoritmi, Department of Industrial Electronics, University of Minho, Guimarães, Portugal.

Center of Mathematics, Department of Mathematics and Applications, University of Minho, Guimarães, Portugal.

出版信息

Neural Netw. 2015 Dec;72:123-39. doi: 10.1016/j.neunet.2015.09.002. Epub 2015 Oct 19.

Abstract

There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.

摘要

当前,对于能够通过与普通人的社会学习互动来获取任务顺序组织的机器人的需求日益增加。通过示范和交流进行交互式学习是当前机器人研究中一个很有前景的研究课题。然而,有效地获取能够使机器人适应不同用户和情境的广义任务表示是一项重大挑战。在本文中,我们提出了一种动态神经场(DNF)模型,该模型的灵感来自于这样一种假设,即神经系统利用初始记忆痕迹的离线重新激活,将新信息逐步纳入结构化知识中。为了实现这一点,该模型将基于快速激活的学习与基于权重的较慢学习相结合,前者用于从单个任务示范中稳健地表示顺序信息,后者用于在内部模拟过程中建立代表各个子任务的神经群体之间的长期关联。学习过程的效率在一个装配范式中进行了测试,在该范式中,人形机器人ARoS学习从其部件构建一辆玩具车。具有不同序列顺序的用户示范以及对初始预测误差的校正,使得机器人能够在很少的社会学习互动中获取关于可能的序列顺序以及子目标之间长期依赖关系的广义任务知识。这一成功体现在一个联合行动场景中,即ARoS与人类伙伴一起使用新获取的装配计划来构建玩具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验