CITIC-Department of Computer Architecture and Technology, University of Granada, Periodista Daniel Saucedo s/n, 18014 Granada, Spain.
Int J Neural Syst. 2013 Jun;23(3):1350010. doi: 10.1142/S012906571350010X. Epub 2013 Mar 26.
In this work, a basic cerebellar neural layer and a machine learning engine are embedded in a recurrent loop which avoids dealing with the motor error or distal error problem. The presented approach learns the motor control based on available sensor error estimates (position, velocity, and acceleration) without explicitly knowing the motor errors. The paper focuses on how to decompose the input into different components in order to facilitate the learning process using an automatic incremental learning model (locally weighted projection regression (LWPR) algorithm). LWPR incrementally learns the forward model of the robot arm and provides the cerebellar module with optimal pre-processed signals. We present a recurrent adaptive control architecture in which an adaptive feedback (AF) controller guarantees a precise, compliant, and stable control during the manipulation of objects. Therefore, this approach efficiently integrates a bio-inspired module (cerebellar circuitry) with a machine learning component (LWPR). The cerebellar-LWPR synergy makes the robot adaptable to changing conditions. We evaluate how this scheme scales for robot-arms of a high number of degrees of freedom (DOFs) using a simulated model of a robot arm of the new generation of light weight robots (LWRs).
在这项工作中,基本的小脑神经层和机器学习引擎被嵌入到一个递归循环中,该循环避免了处理运动误差或远端误差问题。所提出的方法基于可用的传感器误差估计(位置、速度和加速度)学习运动控制,而无需明确知道运动误差。本文重点介绍如何将输入分解为不同的分量,以便使用自动增量学习模型(局部加权投影回归(LWPR)算法)来促进学习过程。LWPR 逐步学习机器人臂的前向模型,并为小脑模块提供最佳预处理信号。我们提出了一种递归自适应控制架构,其中自适应反馈(AF)控制器在操作物体时保证精确、顺应和稳定的控制。因此,这种方法有效地将生物启发模块(小脑电路)与机器学习组件(LWPR)集成在一起。小脑-LWPR 的协同作用使机器人能够适应不断变化的条件。我们使用新一代轻型机器人(LWR)的机器人臂的模拟模型评估了这种方案如何扩展到具有大量自由度(DOFs)的机器人臂。