Suppr超能文献

合成α-磷酸三钙对大鼠骨髓间充质干细胞成骨分化的影响。

The effect of synthetic α-tricalcium phosphate on osteogenic differentiation of rat bone mesenchymal stem cells.

作者信息

Liu Jinzhong, Zhao Liang, Ni Ling, Qiao Chunyan, Li Daowei, Sun Hongchen, Zhang Zongtao

机构信息

Department of Oral Pathology, School of Stomatology, Jilin University Changchun 130021, China.

State Key laboratory Inorganic Synthesis and Preparative Chemistry, Jinlin University Changchun 130012, China.

出版信息

Am J Transl Res. 2015 Sep 15;7(9):1588-601. eCollection 2015.

Abstract

The reconstruction of large bone defects has been the focus in bone tissue engineering research. By acting as synthetic frameworks for cell growth and tissue formation, biomaterials can play a critical role in bone tissue engineering. Among various biomaterials, calcium phosphate based materials include hydroxyapatite (HA), α-tricalcium phosphate (α-TCP), and β-tricalcium phosphate (β-TCP) are widely used as scaffold materials in bone tissue engineering. However, little is known about the effect of α-TCP alone on the osteogenic differentiation of the BMSCs. To this end, we synthesized α-TCP using a novel co-precipitation method. The synthetic α-TCP was then incubated with rat BMSCs under osteogenic inductive medium culture conditions, followed by the analysis of the mRNA levels of various osteogenesis-related genes, including ALP, Rux2, COL-I, and SP7, using a quantitative RT-PCR method. Following incubation of BMSCs with 20 μg/ml α-TCP, cells reached confluency after 7 days. Additionally, the MTT analysis showed that α-TCP at concentration of 10-20 μg/ml had good biocompatibility with BMSCs, showing no significant inhibition of rat BMSCs proliferation. Furthermore, the synthetic α-TCP (20 μg/ml), when incubated with rat BMSCs in the osteogenic culture medium, increased the mRNA levels of various osteogenesis-related genes, including ALP, Rux2, COL-I, and SP7. Finally, treatment of synthetic α-TCP (20 μg/ml) potentiated calcium nodule formations after incubation with rat BMSCs in osteogenic culture medium for 21 days, as compared with non-treated control. Taken together, the results in the present study suggested that α-TCP alone likely promotes rat BMSCs osteogenic differentiation through up-regulating ALP, Col-I, Runx2, and SP7 gene expression.

摘要

大骨缺损的修复一直是骨组织工程研究的重点。生物材料作为细胞生长和组织形成的合成支架,在骨组织工程中起着关键作用。在各种生物材料中,基于磷酸钙的材料包括羟基磷灰石(HA)、α-磷酸三钙(α-TCP)和β-磷酸三钙(β-TCP),被广泛用作骨组织工程中的支架材料。然而,关于单独的α-TCP对骨髓间充质干细胞(BMSCs)成骨分化的影响知之甚少。为此,我们采用一种新型共沉淀法合成了α-TCP。然后将合成的α-TCP在成骨诱导培养基培养条件下与大鼠BMSCs孵育,随后使用定量逆转录聚合酶链反应(RT-PCR)方法分析各种成骨相关基因的mRNA水平,包括碱性磷酸酶(ALP)、Rux2、I型胶原(COL-I)和SP7。用20μg/ml的α-TCP孵育BMSCs后,细胞在7天后达到汇合。此外,MTT分析表明,浓度为10-20μg/ml的α-TCP与BMSCs具有良好的生物相容性,对大鼠BMSCs的增殖没有明显抑制作用。此外,合成的α-TCP(20μg/ml)在成骨培养基中与大鼠BMSCs孵育时,会增加各种成骨相关基因的mRNA水平,包括ALP、Rux2、COL-I和SP7。最后,与未处理的对照组相比,合成的α-TCP(20μg/ml)在成骨培养基中与大鼠BMSCs孵育21天后,促进了钙结节的形成。综上所述,本研究结果表明,单独的α-TCP可能通过上调ALP、Col-I、Runx2和SP7基因表达来促进大鼠BMSCs的成骨分化。

相似文献

4
G/ β- TCP composite scaffold material promotes osteogenic differentiation of bone marrow mesenchymal stem cells.
J Biomed Mater Res B Appl Biomater. 2023 Dec;111(12):2025-2031. doi: 10.1002/jbm.b.35302. Epub 2023 Aug 2.
5
Peri-Implant Bone Regeneration Using rhPDGF-BB, BMSCs, and β-TCP in a Canine Model.
Clin Implant Dent Relat Res. 2016 Apr;18(2):241-52. doi: 10.1111/cid.12259. Epub 2015 Jan 27.
6
The healing of critical-size calvarial bone defects in rat with rhPDGF-BB, BMSCs, and β-TCP scaffolds.
J Mater Sci Mater Med. 2012 Apr;23(4):1073-84. doi: 10.1007/s10856-012-4558-x. Epub 2012 Feb 7.
7
The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.
J Biomed Mater Res A. 2015 May;103(5):1732-45. doi: 10.1002/jbm.a.35303. Epub 2014 Sep 11.

本文引用的文献

1
Characterization of bone marrow mononuclear cells on biomaterials for bone tissue engineering in vitro.
Biomed Res Int. 2015;2015:762407. doi: 10.1155/2015/762407. Epub 2015 Feb 23.
2
Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors.
Adv Drug Deliv Rev. 2015 Nov 1;94:126-40. doi: 10.1016/j.addr.2015.03.004. Epub 2015 Mar 14.
3
Biomaterials mediated microRNA delivery for bone tissue engineering.
Int J Biol Macromol. 2015 Mar;74:404-12. doi: 10.1016/j.ijbiomac.2014.12.034. Epub 2014 Dec 24.
4
Spatial regulation of controlled bioactive factor delivery for bone tissue engineering.
Adv Drug Deliv Rev. 2015 Apr;84:45-67. doi: 10.1016/j.addr.2014.11.018. Epub 2014 Nov 29.
7
Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies.
Adv Drug Deliv Rev. 2015 Apr;84:1-29. doi: 10.1016/j.addr.2014.09.005. Epub 2014 Sep 16.
9
Bone regenerative medicine: classic options, novel strategies, and future directions.
J Orthop Surg Res. 2014 Mar 17;9(1):18. doi: 10.1186/1749-799X-9-18.
10
Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications.
ScientificWorldJournal. 2013 Sep 15;2013:863157. doi: 10.1155/2013/863157. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验