Jantzie Lauren L, Winer Jesse L, Corbett Christopher J, Robinson Shenandoah
Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, Mass., USA.
Dev Neurosci. 2016;38(1):15-26. doi: 10.1159/000441024. Epub 2015 Nov 10.
Preterm infants suffer central nervous system (CNS) injury from hypoxia-ischemia and inflammation - termed encephalopathy of prematurity. Mature CNS injury activates caspase and calpain proteases. Erythropoietin (EPO) limits apoptosis mediated by activated caspases, but its role in modulating calpain activation has not yet been investigated extensively following injury to the developing CNS. We hypothesized that excess calpain activation degrades developmentally regulated molecules essential for CNS circuit formation, myelination and axon integrity, including neuronal potassium-chloride co-transporter (KCC2), myelin basic protein (MBP) and phosphorylated neurofilament (pNF), respectively. Further, we predicted that post-injury EPO treatment could mitigate CNS calpain-mediated degradation. Using prenatal transient systemic hypoxia-ischemia (TSHI) in rats to mimic CNS injury from extreme preterm birth, and postnatal EPO treatment with a clinically relevant dosing regimen, we found sustained postnatal excess cortical calpain activation following prenatal TSHI, as shown by the cleavage of alpha II-spectrin (αII-spectrin) into 145-kDa αII-spectrin degradation products (αII-SDPs) and p35 into p25. Postnatal expression of the endogenous calpain inhibitor calpastatin was also reduced following prenatal TSHI. Calpain substrate expression following TSHI, including cortical KCC2, MBP and NF, was modulated by postnatal EPO treatment. Calpain activation was reflected in serum levels of αII-SDPs and KCC2 fragments, and notably, EPO treatment also modulated KCC2 fragment levels. Together, these data indicate that excess calpain activity contributes to the pathogenesis of encephalopathy of prematurity. Serum biomarkers of calpain activation may detect ongoing cerebral injury and responsiveness to EPO or similar neuroprotective strategies.
早产儿会因缺氧缺血和炎症而遭受中枢神经系统(CNS)损伤,即所谓的早产儿脑病。成熟的中枢神经系统损伤会激活半胱天冬酶和钙蛋白酶。促红细胞生成素(EPO)可限制由激活的半胱天冬酶介导的细胞凋亡,但其在发育中的中枢神经系统损伤后调节钙蛋白酶激活方面的作用尚未得到广泛研究。我们假设过量的钙蛋白酶激活会降解对中枢神经系统回路形成、髓鞘形成和轴突完整性至关重要的发育调节分子,分别包括神经元钾氯共转运体(KCC2)、髓鞘碱性蛋白(MBP)和磷酸化神经丝(pNF)。此外,我们预测损伤后给予EPO治疗可减轻中枢神经系统钙蛋白酶介导的降解。通过在大鼠中使用产前短暂性全身缺氧缺血(TSHI)来模拟极早早产导致的中枢神经系统损伤,并采用临床相关的给药方案进行产后EPO治疗,我们发现产前TSHI后出生后皮质钙蛋白酶持续过度激活,这表现为αII - 血影蛋白(αII - spectrin)裂解为145 kDa的αII - 血影蛋白降解产物(αII - SDPs)以及p35裂解为p25。产前TSHI后内源性钙蛋白酶抑制剂钙蛋白酶抑制蛋白的出生后表达也降低。产后EPO治疗调节了TSHI后钙蛋白酶底物的表达,包括皮质KCC2、MBP和NF。钙蛋白酶激活反映在血清中αII - SDPs和KCC2片段的水平上,值得注意的是,EPO治疗也调节了KCC2片段的水平。总之,这些数据表明过量的钙蛋白酶活性促成了早产儿脑病的发病机制。钙蛋白酶激活的血清生物标志物可能检测到正在进行的脑损伤以及对EPO或类似神经保护策略的反应性。