文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于计算解剖模型的肝脏和脾脏分割

Segmentation of liver and spleen based on computational anatomy models.

作者信息

Dong Chunhua, Chen Yen-Wei, Foruzan Amir Hossein, Lin Lanfen, Han Xian-Hua, Tateyama Tomoko, Wu Xing, Xu Gang, Jiang Huiyan

机构信息

Graduate School of Information Science and Engineering, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Japan.

Graduate School of Information Science and Engineering, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Japan; College of Computer Science and Technology, Zhejiang University, Zhejiang, China.

出版信息

Comput Biol Med. 2015 Dec 1;67:146-60. doi: 10.1016/j.compbiomed.2015.10.007. Epub 2015 Oct 28.


DOI:10.1016/j.compbiomed.2015.10.007
PMID:26551453
Abstract

Accurate segmentation of abdominal organs is a key step in developing a computer-aided diagnosis (CAD) system. Probabilistic atlas based on human anatomical structure, used as a priori information in a Bayes framework, has been widely used for organ segmentation. How to register the probabilistic atlas to the patient volume is the main challenge. Additionally, there is the disadvantage that the conventional probabilistic atlas may cause a bias toward the specific patient study because of the single reference. Taking these into consideration, a template matching framework based on an iterative probabilistic atlas for liver and spleen segmentation is presented in this paper. First, a bounding box based on human anatomical localization, which refers to the statistical geometric location of the organ, is detected for the candidate organ. Then, the probabilistic atlas is used as a template to find the organ in this bounding box by using template matching technology. We applied our method to 60 datasets including normal and pathological cases. For the liver, the Dice/Tanimoto volume overlaps were 0.930/0.870, the root-mean-squared error (RMSE) was 2.906mm. For the spleen, quantification led to 0.922 Dice/0.857 Tanimoto overlaps, 1.992mm RMSE. The algorithm is robust in segmenting normal and abnormal spleens and livers, such as the presence of tumors and large morphological changes. Comparing our method with conventional and recently developed atlas-based methods, our results show an improvement in the segmentation accuracy for multi-organs (p<0.00001).

摘要

腹部器官的精确分割是开发计算机辅助诊断(CAD)系统的关键步骤。基于人体解剖结构的概率图谱,作为贝叶斯框架中的先验信息,已被广泛用于器官分割。如何将概率图谱配准到患者的容积数据上是主要挑战。此外,传统概率图谱存在一个缺点,即由于单一参考,可能会导致对特定患者研究产生偏差。考虑到这些因素,本文提出了一种基于迭代概率图谱的模板匹配框架,用于肝脏和脾脏的分割。首先,基于人体解剖定位检测一个边界框,该边界框指的是器官的统计几何位置,用于候选器官。然后,将概率图谱用作模板,通过模板匹配技术在这个边界框中找到器官。我们将我们的方法应用于60个数据集,包括正常和病理病例。对于肝脏,Dice/Tanimoto体积重叠率分别为0.930/0.870,均方根误差(RMSE)为2.906mm。对于脾脏,量化结果为Dice重叠率0.922/Tanimoto重叠率0.857,RMSE为1.992mm。该算法在分割正常和异常脾脏及肝脏时具有鲁棒性,例如存在肿瘤和较大形态变化的情况。将我们的方法与传统的和最近开发的基于图谱的方法进行比较,我们的结果表明多器官分割精度有所提高(p<0.00001)。

相似文献

[1]
Segmentation of liver and spleen based on computational anatomy models.

Comput Biol Med. 2015-12-1

[2]
Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation.

Med Phys. 2010-2

[3]
Atlas-based automated segmentation of spleen and liver using adaptive enhancement estimation.

Med Image Comput Comput Assist Interv. 2009

[4]
Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images.

Med Image Comput Comput Assist Interv. 2013

[5]
Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.

Med Image Anal. 2015-12

[6]
Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.

Med Image Anal. 2015-12-4

[7]
Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model.

Med Image Comput Comput Assist Interv. 2007

[8]
Granular computing in model based abdominal organs detection.

Comput Med Imaging Graph. 2015-3-10

[9]
Construction of an abdominal probabilistic atlas and its application in segmentation.

IEEE Trans Med Imaging. 2003-4

[10]
Statistical location model for abdominal organ localization.

Med Image Comput Comput Assist Interv. 2009

引用本文的文献

[1]
Evaluation of manual and automated approaches for segmentation and extraction of quantitative indices from [F]FDG PET-CT images.

Biomed Phys Eng Express. 2024-1-5

[2]
Efficient Liver Segmentation from Computed Tomography Images Using Deep Learning.

Comput Intell Neurosci. 2022

[3]
Attention-RefNet: Interactive Attention Refinement Network for Infected Area Segmentation of COVID-19.

IEEE J Biomed Health Inform. 2021-7

[4]
Template Creation for High-Resolution Computed Tomography Scans of the Lung in R Software.

Acad Radiol. 2019-12-13

[5]
Incorporating prior shape knowledge via data-driven loss model to improve 3D liver segmentation in deep CNNs.

Int J Comput Assist Radiol Surg. 2019-11-4

[6]
Automated Segmentation of Tissues Using CT and MRI: A Systematic Review.

Acad Radiol. 2019-8-10

[7]
Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images.

BMC Med Imaging. 2019-3-11

[8]
Registration-Based Organ Positioning and Joint Segmentation Method for Liver and Tumor Segmentation.

Biomed Res Int. 2018-9-24

[9]
An Improved Random Walker with Bayes Model for Volumetric Medical Image Segmentation.

J Healthc Eng. 2017-10-23

[10]
Reliability and repeatability of pulp volume reconstruction through three different volume calculations.

J Forensic Odontostomatol. 2016-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索