Dong Chunhua, Chen Yen-Wei, Foruzan Amir Hossein, Lin Lanfen, Han Xian-Hua, Tateyama Tomoko, Wu Xing, Xu Gang, Jiang Huiyan
Graduate School of Information Science and Engineering, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Japan.
Graduate School of Information Science and Engineering, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Japan; College of Computer Science and Technology, Zhejiang University, Zhejiang, China.
Comput Biol Med. 2015 Dec 1;67:146-60. doi: 10.1016/j.compbiomed.2015.10.007. Epub 2015 Oct 28.
Accurate segmentation of abdominal organs is a key step in developing a computer-aided diagnosis (CAD) system. Probabilistic atlas based on human anatomical structure, used as a priori information in a Bayes framework, has been widely used for organ segmentation. How to register the probabilistic atlas to the patient volume is the main challenge. Additionally, there is the disadvantage that the conventional probabilistic atlas may cause a bias toward the specific patient study because of the single reference. Taking these into consideration, a template matching framework based on an iterative probabilistic atlas for liver and spleen segmentation is presented in this paper. First, a bounding box based on human anatomical localization, which refers to the statistical geometric location of the organ, is detected for the candidate organ. Then, the probabilistic atlas is used as a template to find the organ in this bounding box by using template matching technology. We applied our method to 60 datasets including normal and pathological cases. For the liver, the Dice/Tanimoto volume overlaps were 0.930/0.870, the root-mean-squared error (RMSE) was 2.906mm. For the spleen, quantification led to 0.922 Dice/0.857 Tanimoto overlaps, 1.992mm RMSE. The algorithm is robust in segmenting normal and abnormal spleens and livers, such as the presence of tumors and large morphological changes. Comparing our method with conventional and recently developed atlas-based methods, our results show an improvement in the segmentation accuracy for multi-organs (p<0.00001).
腹部器官的精确分割是开发计算机辅助诊断(CAD)系统的关键步骤。基于人体解剖结构的概率图谱,作为贝叶斯框架中的先验信息,已被广泛用于器官分割。如何将概率图谱配准到患者的容积数据上是主要挑战。此外,传统概率图谱存在一个缺点,即由于单一参考,可能会导致对特定患者研究产生偏差。考虑到这些因素,本文提出了一种基于迭代概率图谱的模板匹配框架,用于肝脏和脾脏的分割。首先,基于人体解剖定位检测一个边界框,该边界框指的是器官的统计几何位置,用于候选器官。然后,将概率图谱用作模板,通过模板匹配技术在这个边界框中找到器官。我们将我们的方法应用于60个数据集,包括正常和病理病例。对于肝脏,Dice/Tanimoto体积重叠率分别为0.930/0.870,均方根误差(RMSE)为2.906mm。对于脾脏,量化结果为Dice重叠率0.922/Tanimoto重叠率0.857,RMSE为1.992mm。该算法在分割正常和异常脾脏及肝脏时具有鲁棒性,例如存在肿瘤和较大形态变化的情况。将我们的方法与传统的和最近开发的基于图谱的方法进行比较,我们的结果表明多器官分割精度有所提高(p<0.00001)。
Comput Biol Med. 2015-12-1
Med Image Comput Comput Assist Interv. 2009
Med Image Comput Comput Assist Interv. 2013
Med Image Comput Comput Assist Interv. 2007
Comput Med Imaging Graph. 2015-3-10
IEEE Trans Med Imaging. 2003-4
Med Image Comput Comput Assist Interv. 2009
Biomed Phys Eng Express. 2024-1-5
Comput Intell Neurosci. 2022
IEEE J Biomed Health Inform. 2021-7
Acad Radiol. 2019-12-13
Int J Comput Assist Radiol Surg. 2019-11-4
Acad Radiol. 2019-8-10
Biomed Res Int. 2018-9-24
J Healthc Eng. 2017-10-23
J Forensic Odontostomatol. 2016-12-1