Suppr超能文献

基于深度学习的 CT 图像肝脏自动分割

Efficient Liver Segmentation from Computed Tomography Images Using Deep Learning.

机构信息

College of Computer Science and Software Engineering, Computer Vision Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China.

Department of Computer Science and IT, The University of Lahore, Sargodha Campus, 40100, Lahore, Pakistan.

出版信息

Comput Intell Neurosci. 2022 May 18;2022:2665283. doi: 10.1155/2022/2665283. eCollection 2022.

Abstract

Segmentation of a liver in computed tomography (CT) images is an important step toward quantitative biomarkers for a computer-aided decision support system and precise medical diagnosis. To overcome the difficulties that come across the liver segmentation that are affected by fuzzy boundaries, stacked autoencoder (SAE) is applied to learn the most discriminative features of the liver among other tissues in abdominal images. In this paper, we propose a patch-based deep learning method for the segmentation of a liver from CT images using SAE. Unlike the traditional machine learning methods, instead of anticipating pixel by pixel learning, our algorithm utilizes the patches to learn the representations and identify the liver area. We preprocessed the whole dataset to get the enhanced images and converted each image into many overlapping patches. These patches are given as input to SAE for unsupervised feature learning. Finally, the learned features with labels of the images are fine tuned, and the classification is performed to develop the probability map in a supervised way. Experimental results demonstrate that our proposed algorithm shows satisfactory results on test images. Our method achieved a 96.47% dice similarity coefficient (DSC), which is better than other methods in the same domain.

摘要

肝脏在计算机断层扫描(CT)图像中的分割是实现计算机辅助决策支持系统和精确医学诊断的定量生物标志物的重要步骤。为了克服肝脏分割所面临的困难,这些困难受到模糊边界的影响,堆叠自动编码器(SAE)被应用于从腹部图像中的其他组织中学习肝脏的最具判别力的特征。在本文中,我们提出了一种基于补丁的深度学习方法,用于使用 SAE 从 CT 图像中分割肝脏。与传统的机器学习方法不同,我们的算法不是逐像素预测,而是利用补丁来学习表示并识别肝脏区域。我们预处理了整个数据集以获取增强图像,并将每张图像转换为许多重叠的补丁。这些补丁作为输入提供给 SAE 进行无监督特征学习。最后,使用带标签的图像对学习到的特征进行微调,并以监督的方式进行分类,以生成概率图。实验结果表明,我们提出的算法在测试图像上取得了令人满意的结果。我们的方法获得了 96.47%的骰子相似系数(DSC),优于同一领域的其他方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1084/9132625/1fa53dfcd7a2/CIN2022-2665283.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验