Subhankar S, Wang Y, Tsui T-C, Rolston S L, Porto J V
Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742 USA.
Phys Rev X. 2019 Apr-Jun;9(2). doi: 10.1103/physrevx.9.021002. Epub 2019 Apr 1.
Quantum simulations with ultracold atoms typically create atomic wavefunctions with structures at optical length scales, where direct imaging suffers from the diffraction limit. In analogy to advances in optical microscopy for biological applications, we use a non-linear atomic response to surpass the diffraction limit. Exploiting quantum interference, we demonstrate imaging with super-resolution of λ/50 and excellent temporal resolution of 500 ns. We characterize our microscope's performance by measuring the ensemble averaged probability density of atoms within the unit cells of an optical lattice, and observe the dynamics of atoms excited into motion. This approach can be readily applied to image any atomic or molecular system, as long as it hosts a three-level system.
使用超冷原子进行的量子模拟通常会创建具有光学长度尺度结构的原子波函数,而直接成像受衍射极限的影响。类似于生物应用中光学显微镜的进展,我们利用非线性原子响应来超越衍射极限。通过利用量子干涉,我们展示了具有λ/50超分辨率和500 ns出色时间分辨率的成像。我们通过测量光学晶格晶胞内原子的系综平均概率密度来表征显微镜的性能,并观察被激发而运动的原子的动力学。只要任何原子或分子系统包含一个三能级系统,这种方法就可以很容易地应用于对其进行成像。