Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada; Department of Natural Resource Sciences, McGill University, Montreal, Quebec H3A 0C5, Canada.
Colloids Surf B Biointerfaces. 2015 Dec 1;136:928-34. doi: 10.1016/j.colsurfb.2015.10.032. Epub 2015 Oct 27.
Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to investigate initial adhesion and subsequent biofilm growth of wild-type Pseudomonas aeruginosa PAO1 and a pili-deficient (ΔpilA) mutant PAO1 strain. Clean, sterilized, silica-coated QCM-D crystals were pre-coated with lysogeny broth (LB), seeded with a PAO1 strain and allowed to grow for 20 h at 37 °C in fresh LB injected at 100 μL/min. QCM-D signals obtained for the wild-type PAO1 strain during the seeding period depict a large positive frequency shift that returns to baseline after ~20 min that is absent in the ΔpilA mutants, suggesting a dynamic pili-mediated attachment event for the wild-type PAO1 strain. During the subsequent growth period, significant and characteristic differences in the acquired QCM-D signals were observed between the wild-type and the ΔpilA mutant. Confocal laser scanning microscopy (CLSM) of the biofilm on the crystal surface showed that these differences could not be explained by differences in the extent of biofilm growth alone. When interpreted according to a coupled resonance model, the QCM-D observations suggest that pili are essential for coupling the developing biomass to the sensor surface. Total internal reflection fluorescence microscopy (TIRF) supports the hypothesis that the characteristic QCM-D signal is indicative of a dynamic attachment event, mediated by pili cell surface appendages pulling the wild-type PAO1 closer to the surface during the seeding period. We show that QCM-D offers direct, non-disruptive, in situ measurements of biofilm-substrate attachment. This technique has the potential to improve the current understanding of biofilm formation phenomena.
利用石英晶体微天平(QCM-D)监测耗散,研究了野生型铜绿假单胞菌 PAO1 和纤毛缺陷(ΔpilA)突变体 PAO1 菌株的初始粘附和随后的生物膜生长。清洁、消毒、涂覆硅的 QCM-D 晶体先用 LB 预涂,然后接种 PAO1 菌株,在新鲜的 LB 中以 100 μL/min 的速度注入,37°C 下培养 20 h。在接种期间,野生型 PAO1 菌株的 QCM-D 信号显示出较大的正频率偏移,约 20 分钟后恢复基线,而在 ΔpilA 突变体中则没有,这表明野生型 PAO1 菌株存在动态纤毛介导的附着事件。在随后的生长阶段,在野生型和 ΔpilA 突变体之间观察到获得的 QCM-D 信号的显著和特征差异。晶体表面生物膜的共焦激光扫描显微镜(CLSM)显示,这些差异不能仅用生物膜生长程度的差异来解释。根据耦合共振模型进行解释时,QCM-D 观察结果表明纤毛对于将生物量与传感器表面偶联是必不可少的。全内反射荧光显微镜(TIRF)支持这样的假设,即特征 QCM-D 信号表明是由纤毛细胞表面附属物介导的动态附着事件,在接种期间将野生型 PAO1 拉向表面。我们表明,QCM-D 提供了生物膜-基底附着的直接、非破坏性、原位测量。该技术有可能提高对生物膜形成现象的现有理解。