Suppr超能文献

表面等离子体共振显示IV型菌毛在铜绿假单胞菌的表面附着中起重要作用。

Surface plasmon resonance shows that type IV pili are important in surface attachment by Pseudomonas aeruginosa.

作者信息

Jenkins A Toby A, Buckling Angus, McGhee Marsha, ffrench-Constant Richard H

机构信息

Departments of Chemistry and Biology, University of Bath, Bath BA2 7AY, UK.

出版信息

J R Soc Interface. 2005 Jun 22;2(3):255-9. doi: 10.1098/rsif.2005.0030.

Abstract

Type IV pili have been shown to play a role in the early stages of bacterial biofilm formation, but not in initial bacterial attachment. Here, using the surface analytical technique, surface plasmon resonance (SPR), we follow the attachment of the bacterium Pseudomonas aeruginosa in real time. In contrast to previous studies, we show that type IV pili mutants are defective in attachment. Both mutants lacking pili (pilA), and those possessing an overabundance of pili (pilT), showed reduced SPR measured attachment compared with the wild-type PAO1 strain. Both pil mutants also showed reduced pathogenicity in a model insect host, as measured by percentage mortality after 24h. SPR revealed differences in the kinetics of attachment between pilA and pilT, differences obscured by endpoint assays using crystal violet stain. These results highlight the power of SPR in monitoring bacterial attachment in real time and also demonstrate an additional role for type IV pili beyond bacterial aggregation and micro-colony formation.

摘要

IV型菌毛已被证明在细菌生物膜形成的早期阶段发挥作用,但在细菌初始附着过程中并非如此。在此,我们使用表面分析技术表面等离子体共振(SPR)实时跟踪铜绿假单胞菌的附着情况。与之前的研究不同,我们发现IV型菌毛突变体在附着方面存在缺陷。与野生型PAO1菌株相比,缺乏菌毛的突变体(pilA)和菌毛过多的突变体(pilT)的SPR测量附着率均降低。通过24小时后的死亡率百分比测量,这两种pil突变体在模型昆虫宿主中的致病性也均降低。SPR揭示了pilA和pilT在附着动力学上的差异,而使用结晶紫染色的终点测定法掩盖了这些差异。这些结果突出了SPR在实时监测细菌附着方面的强大功能,也证明了IV型菌毛在细菌聚集和微菌落形成之外的额外作用。

相似文献

2
The pilT gene contributes to type III ExoS effector injection into epithelial cells in Pseudomonas aeruginosa.
J Infect Chemother. 2016 Apr;22(4):216-20. doi: 10.1016/j.jiac.2015.12.012. Epub 2016 Jan 23.
3
Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7563-8. doi: 10.1073/pnas.1502025112. Epub 2015 Jun 3.
4
Twitching motility contributes to the role of pili in corneal infection caused by Pseudomonas aeruginosa.
Infect Immun. 2003 Sep;71(9):5389-93. doi: 10.1128/IAI.71.9.5389-5393.2003.
6
The adsorption of Pseudomonas aeruginosa bacteriophage phiKMV is dependent on expression regulation of type IV pili genes.
FEMS Microbiol Lett. 2009 Jun;296(2):210-8. doi: 10.1111/j.1574-6968.2009.01640.x. Epub 2009 May 4.
7
Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella.
J Bacteriol. 2008 Apr;190(8):2700-8. doi: 10.1128/JB.01620-07. Epub 2007 Dec 7.
8
Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants.
Mol Microbiol. 2003 Jun;48(6):1511-24. doi: 10.1046/j.1365-2958.2003.03525.x.
10
Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa.
Mol Microbiol. 1994 Sep;13(6):1079-91. doi: 10.1111/j.1365-2958.1994.tb00499.x.

引用本文的文献

1
Exploring roles of the chitinase ChiC in modulating virulence phenotypes.
Microbiol Spectr. 2024 Jul 2;12(7):e0054624. doi: 10.1128/spectrum.00546-24. Epub 2024 May 31.
3
Bacteria differently deploy type-IV pili on surfaces to adapt to nutrient availability.
NPJ Biofilms Microbiomes. 2016 Feb 24;2:15029. doi: 10.1038/npjbiofilms.2015.29. eCollection 2016.
4
Prophages mediate defense against phage infection through diverse mechanisms.
ISME J. 2016 Dec;10(12):2854-2866. doi: 10.1038/ismej.2016.79. Epub 2016 Jun 3.
6
Systematic study of the surface plasmon resonance signals generated by cells for sensors with different characteristic lengths.
PLoS One. 2014 Oct 23;9(10):e107978. doi: 10.1371/journal.pone.0107978. eCollection 2014.
7
You cannot tell a book by looking at the cover: Cryptic complexity in bacterial evolution.
Biomicrofluidics. 2014 Sep 9;8(5):052004. doi: 10.1063/1.4894410. eCollection 2014 Sep.
8
Iron-Depletion prevents biofilm formation in Pseudomonas Aeruginosa through twitching mobility and quorum sensing.
Braz J Microbiol. 2010 Jan;41(1):37-41. doi: 10.1590/S1517-83822010000100008. Epub 2010 Mar 1.
9
Structure and function of the adhesive type IV pilus of Sulfolobus acidocaldarius.
Environ Microbiol. 2012 Dec;14(12):3188-202. doi: 10.1111/j.1462-2920.2012.02898.x. Epub 2012 Oct 19.
10
Eradication of bacteria in suspension and biofilms using methylene blue-loaded dynamic nanoplatforms.
Antimicrob Agents Chemother. 2009 Jul;53(7):3042-8. doi: 10.1128/AAC.01604-08. Epub 2009 May 4.

本文引用的文献

1
Pseudomonas aeruginosa attachment and biofilm development in dynamic environments.
Mol Microbiol. 2004 Aug;53(4):1075-87. doi: 10.1111/j.1365-2958.2004.04181.x.
3
Twitching motility contributes to the role of pili in corneal infection caused by Pseudomonas aeruginosa.
Infect Immun. 2003 Sep;71(9):5389-93. doi: 10.1128/IAI.71.9.5389-5393.2003.
4
Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants.
Mol Microbiol. 2003 Jun;48(6):1511-24. doi: 10.1046/j.1365-2958.2003.03525.x.
6
Type IV pili and twitching motility.
Annu Rev Microbiol. 2002;56:289-314. doi: 10.1146/annurev.micro.56.012302.160938. Epub 2002 Jan 30.
7
Biofilms as complex differentiated communities.
Annu Rev Microbiol. 2002;56:187-209. doi: 10.1146/annurev.micro.56.012302.160705. Epub 2002 Jan 30.
9
Analysis of bacterial detachment from substratum surfaces by the passage of air-liquid interfaces.
Appl Environ Microbiol. 2001 Jun;67(6):2531-7. doi: 10.1128/AEM.67.6.2531-2537.2001.
10
Drosophila as a model host for Pseudomonas aeruginosa infection.
J Bacteriol. 2001 Feb;183(4):1466-71. doi: 10.1128/JB.183.4.1466-1471.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验