Sun Peng, Chubb Charles, Wright Charles E, Sperling George
Department of Cognitive Sciences, University of California, Irvine, CA, 92697-5100, USA.
Department of Psychology, New York University, New York, NY, 10003, USA.
Atten Percept Psychophys. 2016 Feb;78(2):474-515. doi: 10.3758/s13414-015-0978-2.
This paper elaborates a recent conceptualization of feature-based attention in terms of attention filters (Drew et al., Journal of Vision, 10(10:20), 1-16, 2010) into a general purpose centroid-estimation paradigm for studying feature-based attention. An attention filter is a brain process, initiated by a participant in the context of a task requiring feature-based attention, which operates broadly across space to modulate the relative effectiveness with which different features in the retinal input influence performance. This paper describes an empirical method for quantitatively measuring attention filters. The method uses a "statistical summary representation" (SSR) task in which the participant strives to mouse-click the centroid of a briefly flashed cloud composed of items of different types (e.g., dots of different luminances or sizes), weighting some types of items more strongly than others. In different attention conditions, the target weights for different item types in the centroid task are varied. The actual weights exerted on the participant's responses by different item types in any given attention condition are derived by simple linear regression. Because, on each trial, the centroid paradigm obtains information about the relative effectiveness of all the features in the display, both target and distractor features, and because the participant's response is a continuous variable in each of two dimensions (versus a simple binary choice as in most previous paradigms), it is remarkably powerful. The number of trials required to estimate an attention filter is an order of magnitude fewer than the number required to investigate much simpler concepts in typical psychophysical attention paradigms.
本文详细阐述了基于特征的注意力在注意力过滤器方面的最新概念(德鲁等人,《视觉杂志》,10(10:20),1 - 16,2010年),将其转化为一种用于研究基于特征的注意力的通用质心估计范式。注意力过滤器是一种大脑过程,由参与者在需要基于特征的注意力的任务背景下启动,它在空间上广泛运作,以调节视网膜输入中不同特征影响表现的相对有效性。本文描述了一种定量测量注意力过滤器的实证方法。该方法使用“统计摘要表示”(SSR)任务,参与者努力用鼠标点击由不同类型项目(例如不同亮度或大小的点)组成的短暂闪烁云团的质心,对某些类型的项目赋予比其他项目更强的权重。在不同的注意力条件下,质心任务中不同项目类型的目标权重会有所变化。在任何给定的注意力条件下,不同项目类型对参与者反应施加的实际权重通过简单线性回归得出。因为在每次试验中,质心范式都会获取关于显示中所有特征(目标特征和干扰特征)相对有效性的信息,并且因为参与者的反应在两个维度上都是连续变量(与大多数先前范式中的简单二元选择不同),所以它非常强大。估计一个注意力过滤器所需的试验次数比在典型的心理物理学注意力范式中研究简单得多的概念所需的次数少一个数量级。