Sperlich D, Barbeta A, Ogaya R, Sabaté S, Peñuelas J
Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain.
J Exp Bot. 2016 Feb;67(3):821-33. doi: 10.1093/jxb/erv492. Epub 2015 Nov 9.
Terrestrial carbon exchange is a key process of the global carbon cycle consisting of a delicate balance between photosynthetic carbon uptake and respiratory release. We have, however, a limited understanding how long-term decreases in precipitation induced by climate change affect the boundaries and mechanisms of photosynthesis and respiration. We examined the seasonality of photosynthetic and respiratory traits and evaluated the adaptive mechanism of the foliar carbon balance of Quercus ilex L. experiencing a long-term rainfall-exclusion experiment. Day respiration (Rd) but not night respiration (Rn) was generally higher in the drought treatment leading to an increased Rd/Rn ratio. The limitation of mesophyll conductance (gm) on photosynthesis was generally stronger than stomatal limitation (gs) in the drought treatment, reflected in a lower gm/gs ratio. The peak photosynthetic activity in the drought treatment occurred in an atypical favourable summer in parallel with lower Rd/Rn and higher gm/gs ratios. The plant carbon balance was thus strongly improved through: (i) higher photosynthetic rates induced by gm; and (ii) decreased carbon losses mediated by Rd. Interestingly, photosynthetic potentials (Vc,max, Jmax, and TPU) were not affected by the drought treatment, suggesting a dampening effect on the biochemical level in the long term. In summary, the trees experiencing a 14-year-long drought treatment adapted through higher plasticity in photosynthetic and respiratory traits, so that eventually the atypical favourable growth period was exploited more efficiently.
陆地碳交换是全球碳循环的关键过程,由光合碳吸收与呼吸释放之间的微妙平衡构成。然而,我们对于气候变化导致的降水长期减少如何影响光合作用和呼吸作用的边界及机制了解有限。我们通过一项长期降雨排除实验,研究了冬青栎光合和呼吸特征的季节性,并评估了其叶片碳平衡的适应机制。干旱处理下,日间呼吸(Rd)普遍高于夜间呼吸(Rn),导致Rd/Rn比值增加。干旱处理中,叶肉导度(gm)对光合作用的限制通常强于气孔限制(gs),表现为较低的gm/gs比值。干旱处理下的光合活性峰值出现在一个非典型的有利夏季,同时Rd/Rn比值较低,gm/gs比值较高。因此,植物碳平衡通过以下方式得到显著改善:(i)gm诱导的较高光合速率;(ii)Rd介导的碳损失减少。有趣的是,光合潜力(Vc,max、Jmax和TPU)不受干旱处理影响,表明长期来看对生化水平有抑制作用。总之,经历了14年干旱处理的树木通过光合和呼吸特征更高的可塑性实现了适应,从而最终更有效地利用了非典型的有利生长时期。