Suppr超能文献

通过表面化学修饰胶体纳米晶固体中的热输运。

Modifying Thermal Transport in Colloidal Nanocrystal Solids with Surface Chemistry.

机构信息

School for Engineering of Matter, Transport & Energy, Arizona State University , Tempe, Arizona 85287, United States.

出版信息

ACS Nano. 2015 Dec 22;9(12):12079-87. doi: 10.1021/acsnano.5b05085. Epub 2015 Nov 13.

Abstract

We present a systematic study on the effect of surface chemistry on thermal transport in colloidal nanocrystal (NC) solids. Using PbS NCs as a model system, we vary ligand binding group (thiol, amine, and atomic halides), ligand length (ethanedithiol, butanedithiol, hexanedithiol, and octanedithiol), and NC diameter (3.3-8.2 nm). Our experiments reveal several findings: (i) The ligand choice can vary the NC solid thermal conductivity by up to a factor of 2.5. (ii) The ligand binding strength to the NC core does not significantly impact thermal conductivity. (iii) Reducing the ligand length can decrease the interparticle distance, which increases thermal conductivity. (iv) Increasing the NC diameter increases thermal conductivity. (v) The effect of surface chemistry can exceed the effect of NC diameter and becomes more pronounced as NC diameter decreases. By combining these trends, we demonstrate that the thermal conductivity of NC solids can be varied by an overall factor of 4, from ∼0.1-0.4 W/m-K. We complement these findings with effective medium approximation modeling and identify thermal transport in the ligand matrix as the rate-limiter for thermal transport. By combining these modeling results with our experimental observations, we conclude that future efforts to increase thermal conductivity in NC solids should focus on the ligand-ligand interface between neighboring NCs.

摘要

我们对胶体纳米晶体 (NC) 固体中表面化学对热输运的影响进行了系统研究。以 PbS NC 作为模型体系,我们改变了配体结合基团(硫醇、胺和原子卤化物)、配体长度(乙二硫醇、丁二硫醇、己二硫醇和辛二硫醇)和 NC 直径(3.3-8.2nm)。我们的实验揭示了以下几个发现:(i)配体的选择可以使 NC 固体的热导率变化高达 2.5 倍。(ii)配体与 NC 核的结合强度对热导率没有显著影响。(iii)减小配体长度可以减小颗粒间的距离,从而增加热导率。(iv)增加 NC 直径会增加热导率。(v)表面化学的影响可以超过 NC 直径的影响,并且随着 NC 直径的减小而变得更加明显。通过结合这些趋势,我们证明 NC 固体的热导率可以通过整体因素 4 来改变,从约 0.1-0.4 W/m-K。我们通过有效介质近似模型对这些发现进行了补充,并确定配体基质中的热传递是热传递的限速步骤。通过将这些建模结果与我们的实验观察相结合,我们得出结论,未来提高 NC 固体热导率的努力应集中在相邻 NC 之间的配体-配体界面上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验