Boles Michael A, Talapin Dmitri V
Department of Chemistry and James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States.
ACS Nano. 2019 May 28;13(5):5375-5384. doi: 10.1021/acsnano.9b00006. Epub 2019 May 2.
Self-assembly of two sizes of nearly spherical colloidal nanocrystals (NCs) capped with hydrocarbon surface ligands has been shown to produce more than 20 distinct phases of binary nanocrystal superlattices (BNSLs). Such structural diversity, in striking contrast to binary systems of micron-sized colloidal beads, cannot be rationalized by models assuming entropy-driven crystallization of simple spheres. In this work, we show that the PbS ligand binding equilibrium controls the relative stability of two closely related BNSL structures featuring alternating layers of PbS and Au NCs. At an intermediate size ratio, as-prepared PbS NCs assemble with Au NCs into CuAu BNSLs featuring orientational coherence of PbS NCs across the lattice. Measurement of interparticle separations within CuAu and modeling of the structure reveal that PbS inorganic cores are nearly in contact through (100) NC surfaces in the square tiling of the CuAu basal plane. On the other hand, AlB BNSLs with PbS NCs packed in random orientations were found to be the dominant self-assembly product when the same binary NC solution was evaporated in the presence of added oleic acid (OAH). Solution nuclear magnetic resonance titration experiments confirmed that added OAH binds to PbS NCs, implicating ligand surface coverage as an important factor influencing the relative stability of CuAu and AlB BNSLs at the experimental size ratio. From these results, we conclude that as-prepared PbS NCs feature sparsely covered (100) surfaces and thus effectively flat patches along NC x-, y-, and z-directions. Such anisotropic PbS-PbS interactions can be efficiently screened by restoring effectively spherical NC shape via addition of OAH to the binary assembly solution. Our findings underscore the important contribution of NC surfaces to superlattice phase stability and offer a strategy for targeted BNSL assembly.
已证明,由烃类表面配体包覆的两种尺寸的近球形胶体纳米晶体(NCs)自组装可产生20多种不同相的二元纳米晶体超晶格(BNSLs)。与微米级胶体珠二元体系形成鲜明对比的是,这种结构多样性无法用假设简单球体熵驱动结晶的模型来解释。在这项工作中,我们表明,PbS配体结合平衡控制着两种密切相关的BNSL结构的相对稳定性,这两种结构具有交替的PbS和Au NCs层。在中等尺寸比下,制备好的PbS NCs与Au NCs组装成具有PbS NCs跨晶格取向相干性的CuAu BNSLs。对CuAu内颗粒间间距的测量和结构建模表明,在CuAu基面的方形平铺中,PbS无机核通过(100)NC表面几乎相互接触。另一方面,当在添加油酸(OAH)的情况下蒸发相同的二元NC溶液时,发现具有随机取向的PbS NCs的AlB BNSLs是主要的自组装产物。溶液核磁共振滴定实验证实,添加的OAH与PbS NCs结合,这意味着配体表面覆盖率是影响实验尺寸比下CuAu和AlB BNSLs相对稳定性的重要因素。从这些结果中,我们得出结论,制备好的PbS NCs具有稀疏覆盖的(100)表面,因此沿NC的x、y和z方向有效地形成了平坦区域。通过向二元组装溶液中添加OAH来恢复有效的球形NC形状,可以有效地筛选这种各向异性的PbS - PbS相互作用。我们的发现强调了NC表面对超晶格相稳定性做出的重要贡献,并提供了一种靶向BNSL组装的策略。