Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-2700, USA.
J Am Chem Soc. 2011 Sep 21;133(37):14504-6. doi: 10.1021/ja205142d. Epub 2011 Aug 25.
Base eversion is a fundamental process in the biochemistry of nucleic acids, allowing proteins engaged in DNA repair and epigenetic modifications to access target bases in DNA. Crystal structures reveal end points of these processes, but not the pathways involved in the dynamic process of base recognition. To elucidate the pathway taken by 8-oxoguanine during base excision repair by Fpg, we calculated free energy surfaces during eversion of the damaged base through the major and minor grooves. The minor groove pathway and free energy barrier (6-7 kcal/mol) are consistent with previously reported results (Qi, Y.; Spong, M. C.; Nam, K.; Banerjee, A.; Jiralerspong, S.; Karplus, M.; Verdine, G. L. Nature 2009, 462, 762.) However, eversion of 8-oxoG through the major groove encounters a significantly lower barrier (3-4 kcal/mol) more consistent with experimentally determined rates of enzymatic sliding during lesion search (Blainey, P. C.; van Oijent, A. M.; Banerjee, A.; Verdine, G. L.; Xie, X. S. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 5752.). Major groove eversion has been suggested for other glycosylases, suggesting that in addition to function, dynamics of base eversion may also be conserved.
碱基外翻是核酸生物化学的基本过程,使参与 DNA 修复和表观遗传修饰的蛋白质能够接触到 DNA 中的靶碱基。晶体结构揭示了这些过程的终点,但没有揭示碱基识别的动态过程中涉及的途径。为了阐明 Fpg 在碱基切除修复过程中识别 8-氧鸟嘌呤的途径,我们通过主沟和小沟计算了损伤碱基外翻过程中的自由能表面。小沟途径和自由能势垒(6-7 kcal/mol)与先前报道的结果一致(Qi, Y.; Spong, M. C.; Nam, K.; Banerjee, A.; Jiralerspong, S.; Karplus, M.; Verdine, G. L. Nature 2009, 462, 762.)。然而,8-氧鸟嘌呤通过主沟的外翻遇到的势垒要低得多(3-4 kcal/mol),与实验确定的酶在寻找损伤时的滑动速率更一致(Blainey, P. C.; van Oijent, A. M.; Banerjee, A.; Verdine, G. L.; Xie, X. S. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 5752.)。其他糖苷酶也被认为存在主沟外翻,这表明除了功能外,碱基外翻的动力学也可能是保守的。