Suppr超能文献

早期动物进化与神经系统的起源

Early animal evolution and the origins of nervous systems.

作者信息

Budd Graham E

机构信息

Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Villavägen 16, Uppsala 752 36, Sweden

出版信息

Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684). doi: 10.1098/rstb.2015.0037.

Abstract

Understanding the evolution of early nervous systems is hazardous because we lack good criteria for determining homology between the systems of distant taxa; the timing of the evolutionary events is contested, and thus the relevant ecological and geological settings for them are also unclear. Here I argue that no simple approach will resolve the first issue, but that it remains likely that animals evolved relatively late, and that their nervous systems thus arose during the late Ediacaran, in a context provided by the changing planktonic and benthic environments of the time. The early trace fossil provides the most concrete evidence for early behavioural diversification, but it cannot simply be translated into increasing nervous system complexity: behavioural complexity does not map on a one-to-one basis onto nervous system complexity, both because of possible limitations to behaviour caused by the environment and because we know that even organisms without nervous systems are capable of relatively complex behaviour.

摘要

理解早期神经系统的演化是有风险的,因为我们缺乏确定远缘分类群系统间同源性的良好标准;进化事件的时间存在争议,因此与之相关的生态和地质背景也不清楚。在这里我认为,没有简单的方法能解决第一个问题,但动物很可能进化得相对较晚,因此它们的神经系统是在埃迪卡拉纪晚期,在当时浮游和底栖环境变化的背景下出现的。早期遗迹化石为早期行为多样化提供了最具体的证据,但它不能简单地等同于神经系统复杂性的增加:行为复杂性与神经系统复杂性并非一一对应,这既是因为环境可能对行为有限制,也是因为我们知道即使是没有神经系统的生物也能表现出相对复杂的行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4c7/4650121/1a044b756078/rstb20150037-g1.jpg

相似文献

1
Early animal evolution and the origins of nervous systems.
Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684). doi: 10.1098/rstb.2015.0037.
2
The origin of the animals and a 'Savannah' hypothesis for early bilaterian evolution.
Biol Rev Camb Philos Soc. 2017 Feb;92(1):446-473. doi: 10.1111/brv.12239. Epub 2015 Nov 20.
4
Molecular clocks and the early evolution of metazoan nervous systems.
Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684). doi: 10.1098/rstb.2015.0046.
5
Complex Homology and the Evolution of Nervous Systems.
Trends Ecol Evol. 2016 Feb;31(2):127-135. doi: 10.1016/j.tree.2015.12.005. Epub 2015 Dec 30.
6
Integrated records of environmental change and evolution challenge the Cambrian Explosion.
Nat Ecol Evol. 2019 Apr;3(4):528-538. doi: 10.1038/s41559-019-0821-6. Epub 2019 Mar 11.
7
The rise and early evolution of animals: where do we stand from a trace-fossil perspective?
Interface Focus. 2020 Aug 6;10(4):20190103. doi: 10.1098/rsfs.2019.0103. Epub 2020 Jun 12.
8
Infaunal augurs of the Cambrian explosion: An Ediacaran trace fossil assemblage from Nevada, USA.
Geobiology. 2020 Jul;18(4):486-496. doi: 10.1111/gbi.12387. Epub 2020 Apr 3.
9
The Cambrian explosion.
Curr Biol. 2015 Oct 5;25(19):R864-8. doi: 10.1016/j.cub.2015.04.047.
10
Ediacaran Extinction and Cambrian Explosion.
Trends Ecol Evol. 2018 Sep;33(9):653-663. doi: 10.1016/j.tree.2018.06.003. Epub 2018 Jul 12.

引用本文的文献

1
Evolution of Oligodendroglia and Myelin.
Adv Neurobiol. 2025;43:41-59. doi: 10.1007/978-3-031-87919-7_2.
2
The unbearable slowness of being: Why do we live at 10 bits/s?
Neuron. 2025 Jan 22;113(2):192-204. doi: 10.1016/j.neuron.2024.11.008. Epub 2024 Dec 17.
3
Coordinated cellular behavior regulated by epinephrine neurotransmitters in the nerveless placozoa.
Nat Commun. 2024 Oct 4;15(1):8626. doi: 10.1038/s41467-024-52941-y.
4
Biophysics of Evolution of Intellectual Systems.
Biophysics (Oxf). 2022;67(2):320-326. doi: 10.1134/S0006350922020051. Epub 2022 Jun 29.
5
Towards the Idea of Molecular Brains.
Int J Mol Sci. 2021 Nov 1;22(21):11868. doi: 10.3390/ijms222111868.
6
Evolution of heterogeneous perceptual limits and indifference in competitive foraging.
PLoS Comput Biol. 2021 Feb 23;17(2):e1008734. doi: 10.1371/journal.pcbi.1008734. eCollection 2021 Feb.
7
The chemical brain hypothesis for the origin of nervous systems.
Philos Trans R Soc Lond B Biol Sci. 2021 Mar 29;376(1821):20190761. doi: 10.1098/rstb.2019.0761. Epub 2021 Feb 8.
8
Neural architecture and regeneration in the acoel .
Proc Biol Sci. 2020 Jul 29;287(1931):20201198. doi: 10.1098/rspb.2020.1198. Epub 2020 Jul 22.
9
Survival and selection biases in early animal evolution and a source of systematic overestimation in molecular clocks.
Interface Focus. 2020 Aug 6;10(4):20190110. doi: 10.1098/rsfs.2019.0110. Epub 2020 Jun 12.
10

本文引用的文献

2
PATTERNS OF VARIATION IN LEVELS OF HOMOPLASY.
Evolution. 1989 Dec;43(8):1781-1795. doi: 10.1111/j.1558-5646.1989.tb02626.x.
3
The origin of the animals and a 'Savannah' hypothesis for early bilaterian evolution.
Biol Rev Camb Philos Soc. 2017 Feb;92(1):446-473. doi: 10.1111/brv.12239. Epub 2015 Nov 20.
4
An option space for early neural evolution.
Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684). doi: 10.1098/rstb.2015.0181.
5
Where is my mind? How sponges and placozoans may have lost neural cell types.
Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684). doi: 10.1098/rstb.2015.0059.
6
Molecular clocks and the early evolution of metazoan nervous systems.
Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684). doi: 10.1098/rstb.2015.0046.
7
Unlocking the early fossil record of the arthropod central nervous system.
Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684). doi: 10.1098/rstb.2015.0038.
8
Early metazoan life: divergence, environment and ecology.
Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684). doi: 10.1098/rstb.2015.0036.
9
Phylogenomic Insights into Animal Evolution.
Curr Biol. 2015 Oct 5;25(19):R876-87. doi: 10.1016/j.cub.2015.07.060.
10
Critical appraisal of tubular putative eumetazoans from the Ediacaran Weng'an Doushantuo biota.
Proc Biol Sci. 2015 Aug 7;282(1812):20151169. doi: 10.1098/rspb.2015.1169.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验