International Center for Materials Nanoarchitectonics, National Institute for Materials Science , 1-1 Namiki, Tsukuba 305-0044, Japan.
School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States.
ACS Nano. 2015 Dec 22;9(12):12182-8. doi: 10.1021/acsnano.5b05394. Epub 2015 Nov 18.
Selective doping and band-offset in germanium (Ge)/silicon (Si) core-shell nanowire (NW) structures can realize a type of high electron mobility transistor structure in one-dimensional NWs by separating the carrier transport region from the impurity-doped region. Precise analysis, using Raman spectroscopy of the Ge optical phonon peak, can distinguish three effects: the phonon confinement effect, the stress effect due to the heterostructures, and the Fano effect. The Fano effect is the most important to demonstrate hole gas accumulation in Ge/Si core-shell NWs. Using these techniques, we obtained conclusive evidence of the hole gas accumulation in Ge/Si core-shell NWs. The control of hole gas concentration can be realized by changing the B-doping concentration in the Si shell.
在锗(Ge)/硅(Si)核壳纳米线(NW)结构中进行选择性掺杂和能带偏移,可以通过将载流子输运区域与杂质掺杂区域分离,在一维 NW 中实现一种高电子迁移率晶体管结构。利用拉曼光谱对 Ge 光学声子峰进行精确分析,可以区分三种效应:声子限制效应、异质结构引起的应力效应以及 Fano 效应。Fano 效应对于证明 Ge/Si 核壳 NW 中的空穴气积累最为重要。使用这些技术,我们获得了 Ge/Si 核壳 NW 中空穴气积累的确凿证据。通过改变 Si 壳中的 B 掺杂浓度,可以实现空穴气浓度的控制。