Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Road, Austin, Texas 78758, USA.
Nat Nanotechnol. 2014 Feb;9(2):116-20. doi: 10.1038/nnano.2013.301. Epub 2014 Jan 19.
Semiconductor nanowires are potential candidates for applications in quantum information processing, Josephson junctions and field-effect transistors and provide a unique test bed for low-dimensional physical phenomena. The ability to fabricate nanowire heterostructures with atomically flat, defect-free interfaces enables energy band engineering in both axial and radial directions. The design of radial, or core-shell, nanowire heterostructures relies on energy band offsets that confine charge carriers into the core region, potentially reducing scattering from charged impurities on the nanowire surface. Key to the design of such nanoscale heterostructures is a fundamental understanding of the heterointerface properties, particularly energy band offsets and strain. The charge-transfer and confinement mechanism can be used to achieve modulation doping in core-shell structures. By selectively doping the shell, which has a larger bandgap, charge carriers are donated and confined in the core, generating a quasi-one-dimensional electron system with higher mobility. Here, we demonstrate radial modulation doping in coherently strained Ge-SixGe1-x core-shell nanowires and a technique to directly measure their valence band offset. Radial modulation doping is achieved by incorporating a B-doped layer during epitaxial shell growth. In contrast to previous work showing site-selective doping in Ge-Si core-shell nanowires, we find both an enhancement in peak hole mobility compared with undoped nanowires and observe a decoupling of electron transport in the core and shell regions. This decoupling stems from the higher carrier mobility in the core than in the shell and allows a direct measurement of the valence band offset for nanowires of various shell compositions.
半导体纳米线在量子信息处理、约瑟夫森结和场效应晶体管等领域具有广泛的应用前景,为低维物理现象提供了独特的实验平台。通过制造具有原子级平整、无缺陷界面的纳米线异质结构,可以实现轴向和径向能带工程。径向或核壳纳米线异质结构的设计依赖于能带偏移,能带偏移将载流子限制在核区,从而可能减少纳米线表面带电杂质的散射。这种纳米级异质结构设计的关键是对异质界面性质,特别是能带偏移和应变有基本的了解。电荷转移和限制机制可用于实现核壳结构中的调制掺杂。通过选择性掺杂具有较大带隙的壳,可以提供和限制载流子在核中,从而产生具有更高迁移率的准一维电子系统。在这里,我们在相干应变 Ge-Si x Ge 1-x 核壳纳米线中演示了径向调制掺杂,并提出了一种直接测量其价带偏移的技术。通过在外延壳生长过程中掺入 B 掺杂层,可以实现径向调制掺杂。与之前在 Ge-Si 核壳纳米线中显示出的选择性掺杂的工作相比,我们发现与未掺杂纳米线相比,峰值空穴迁移率得到了提高,并且观察到核和壳区的电子输运解耦。这种解耦源于核中载流子迁移率高于壳中,从而可以直接测量各种壳组成的纳米线的价带偏移。