Moraga Ignacio, Richter David, Wilmes Stephan, Winkelmann Hauke, Jude Kevin, Thomas Christoph, Suhoski Megan M, Engleman Edgar G, Piehler Jacob, Garcia K Christopher
Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5345, USA. Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany.
Sci Signal. 2015 Nov 10;8(402):ra114. doi: 10.1126/scisignal.aab2677.
Cytokines dimerize cell surface receptors to activate signaling and regulate many facets of the immune response. Many cytokines have pleiotropic effects, inducing a spectrum of redundant and distinct effects on different cell types. This pleiotropy has hampered cytokine-based therapies, and the high doses required for treatment often lead to off-target effects, highlighting the need for a more detailed understanding of the parameters controlling cytokine-induced signaling and bioactivities. Using the prototypical cytokine interleukin-13 (IL-13), we explored the interrelationships between receptor binding and a wide range of downstream cellular responses. We applied structure-based engineering to generate IL-13 variants that covered a spectrum of binding strengths for the receptor subunit IL-13Rα1. Engineered IL-13 variants representing a broad range of affinities for the receptor exhibited similar potencies in stimulating the phosphorylation of STAT6 (signal transducer and activator of transcription 6). Delays in the phosphorylation and nuclear translocation of STAT6 were only apparent for those IL-13 variants with markedly reduced affinities for the receptor. From these data, we developed a mechanistic model that quantitatively reproduced the kinetics of STAT6 phosphorylation for the entire spectrum of binding affinities. Receptor endocytosis played a key role in modulating STAT6 activation, whereas the lifetime of receptor-ligand complexes at the plasma membrane determined the potency of the variant for inducing more distal responses. This complex interrelationship between extracellular ligand binding and receptor function provides the foundation for new mechanism-based strategies that determine the optimal cytokine dose to enhance therapeutic efficacy.
细胞因子使细胞表面受体二聚化以激活信号传导并调节免疫反应的多个方面。许多细胞因子具有多效性,对不同细胞类型诱导一系列冗余和独特的效应。这种多效性阻碍了基于细胞因子的疗法,治疗所需的高剂量常常导致脱靶效应,凸显了更详细了解控制细胞因子诱导的信号传导和生物活性参数的必要性。我们使用典型的细胞因子白细胞介素-13(IL-13),探索了受体结合与广泛的下游细胞反应之间的相互关系。我们应用基于结构的工程方法来生成IL-13变体,这些变体涵盖了对受体亚基IL-13Rα1的一系列结合强度。代表对受体具有广泛亲和力的工程化IL-13变体在刺激信号转导和转录激活因子6(STAT6)磷酸化方面表现出相似的效力。只有那些对受体亲和力明显降低的IL-13变体,STAT6的磷酸化和核转位才会出现延迟。基于这些数据,我们建立了一个机制模型,该模型定量地再现了整个结合亲和力范围内STAT6磷酸化的动力学。受体内吞作用在调节STAT6激活中起关键作用,而受体-配体复合物在质膜上的寿命决定了变体诱导更远端反应的效力。细胞外配体结合与受体功能之间这种复杂的相互关系为基于新机制的策略奠定了基础,这些策略可确定最佳细胞因子剂量以提高治疗效果。