Suppr超能文献

RNA聚合酶II暂停作为基因组的上下文依赖读取器。

RNA polymerase II pausing as a context-dependent reader of the genome.

作者信息

Scheidegger Adam, Nechaev Sergei

机构信息

Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.

出版信息

Biochem Cell Biol. 2016 Feb;94(1):82-92. doi: 10.1139/bcb-2015-0045. Epub 2015 Sep 15.

Abstract

The RNA polymerase II (Pol II) transcribes all mRNA genes in eukaryotes and is among the most highly regulated enzymes in the cell. The classic model of mRNA gene regulation involves recruitment of the RNA polymerase to gene promoters in response to environmental signals. Higher eukaryotes have an additional ability to generate multiple cell types. This extra level of regulation enables each cell to interpret the same genome by committing to one of the many possible transcription programs and executing it in a precise and robust manner. Whereas multiple mechanisms are implicated in cell type-specific transcriptional regulation, how one genome can give rise to distinct transcriptional programs and what mechanisms activate and maintain the appropriate program in each cell remains unclear. This review focuses on the process of promoter-proximal Pol II pausing during early transcription elongation as a key step in context-dependent interpretation of the metazoan genome. We highlight aspects of promoter-proximal Pol II pausing, including its interplay with epigenetic mechanisms, that may enable cell type-specific regulation, and emphasize some of the pertinent questions that remain unanswered and open for investigation.

摘要

RNA聚合酶II(Pol II)转录真核生物中的所有mRNA基因,是细胞中受调控程度最高的酶之一。mRNA基因调控的经典模型涉及RNA聚合酶响应环境信号被招募到基因启动子上。高等真核生物具有产生多种细胞类型的额外能力。这种额外的调控水平使每个细胞能够通过致力于众多可能的转录程序之一并以精确且稳健的方式执行它来解读相同的基因组。虽然多种机制与细胞类型特异性转录调控有关,但一个基因组如何产生不同的转录程序以及什么机制在每个细胞中激活并维持适当的程序仍不清楚。本综述聚焦于转录早期延伸过程中启动子近端Pol II暂停这一过程,将其作为后生动物基因组上下文依赖性解读的关键步骤。我们强调启动子近端Pol II暂停的各个方面,包括其与表观遗传机制的相互作用,这些方面可能实现细胞类型特异性调控,并强调一些仍未得到解答且有待研究的相关问题。

相似文献

1
RNA polymerase II pausing as a context-dependent reader of the genome.
Biochem Cell Biol. 2016 Feb;94(1):82-92. doi: 10.1139/bcb-2015-0045. Epub 2015 Sep 15.
2
7SKiing on chromatin: Move globally, act locally.
RNA Biol. 2016 Jun 2;13(6):545-53. doi: 10.1080/15476286.2016.1181254. Epub 2016 Apr 29.
3
Promoter-proximal pausing of RNA polymerase II: an opportunity to regulate gene transcription.
J Recept Signal Transduct Res. 2010 Feb;30(1):31-42. doi: 10.3109/10799890903517921.
4
Getting up to speed with transcription elongation by RNA polymerase II.
Nat Rev Mol Cell Biol. 2015 Mar;16(3):167-77. doi: 10.1038/nrm3953. Epub 2015 Feb 18.
6
Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb.
Nucleic Acids Res. 2016 Sep 19;44(16):7527-39. doi: 10.1093/nar/gkw585. Epub 2016 Jul 1.
8
Multiple P-TEFbs cooperatively regulate the release of promoter-proximally paused RNA polymerase II.
Nucleic Acids Res. 2016 Aug 19;44(14):6853-67. doi: 10.1093/nar/gkw571. Epub 2016 Jun 28.
9
KAP1 Recruitment of the 7SK snRNP Complex to Promoters Enables Transcription Elongation by RNA Polymerase II.
Mol Cell. 2016 Jan 7;61(1):39-53. doi: 10.1016/j.molcel.2015.11.004. Epub 2015 Dec 24.
10
PTEN modulates gene transcription by redistributing genome-wide RNA polymerase II occupancy.
Hum Mol Genet. 2019 Sep 1;28(17):2826-2834. doi: 10.1093/hmg/ddz112.

引用本文的文献

1
Dynamic Interactions of Transcription Factors and Enhancer Reprogramming in Cancer Progression.
Front Oncol. 2021 Sep 20;11:753051. doi: 10.3389/fonc.2021.753051. eCollection 2021.
3
The transcription factor Spt4-Spt5 complex regulates the expression of and .
Autophagy. 2020 Jul;16(7):1172-1185. doi: 10.1080/15548627.2019.1659573. Epub 2019 Sep 8.
4
Genome-wide RNA pol II initiation and pausing in neural progenitors of the rat.
BMC Genomics. 2019 Jun 11;20(1):477. doi: 10.1186/s12864-019-5829-4.
5
Perturbing Enhancer Activity in Cancer Therapy.
Cancers (Basel). 2019 May 7;11(5):634. doi: 10.3390/cancers11050634.
6
Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA Polymerase II.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4368-E4376. doi: 10.1073/pnas.1717920115. Epub 2018 Apr 9.

本文引用的文献

1
Biological chromodynamics: a general method for measuring protein occupancy across the genome by calibrating ChIP-seq.
Nucleic Acids Res. 2015 Nov 16;43(20):e132. doi: 10.1093/nar/gkv670. Epub 2015 Jun 30.
4
Calibrating ChIP-Seq with Nucleosomal Internal Standards to Measure Histone Modification Density Genome Wide.
Mol Cell. 2015 Jun 4;58(5):886-99. doi: 10.1016/j.molcel.2015.04.022. Epub 2015 May 21.
5
Transcriptional refractoriness is dependent on core promoter architecture.
Nat Commun. 2015 Apr 8;6:6753. doi: 10.1038/ncomms7753.
7
GAGA factor maintains nucleosome-free regions and has a role in RNA polymerase II recruitment to promoters.
PLoS Genet. 2015 Mar 27;11(3):e1005108. doi: 10.1371/journal.pgen.1005108. eCollection 2015 Mar.
8
Intramolecular circularization increases efficiency of RNA sequencing and enables CLIP-Seq of nuclear RNA from human cells.
Nucleic Acids Res. 2015 Jun 23;43(11):e75. doi: 10.1093/nar/gkv213. Epub 2015 Mar 26.
10
Pausing of RNA polymerase II regulates mammalian developmental potential through control of signaling networks.
Mol Cell. 2015 Apr 16;58(2):311-322. doi: 10.1016/j.molcel.2015.02.003. Epub 2015 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验