Li Xin, Pongprueksa Pong, Van Landuyt Kirsten, Chen Zhi, Pedano Mariano, Van Meerbeek Bart, De Munck Jan
BIOMAT, Department of Oral Health Sciences, KU Leuven (University of Leuven) & Dentistry, University Hospitals Leuven, Kapucijnenvoer 7, blok A - box 7001, Leuven, BE-3000, Belgium.
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR, China.
Clin Oral Investig. 2016 Sep;20(7):1663-73. doi: 10.1007/s00784-015-1650-x. Epub 2015 Nov 10.
This study aims to characterize the chemical interplay of hydraulic calcium silicate cements at dentin.
Class I cavities were prepared in non-carious human third molars and filled with Biodentine (Septodont) or ProRoot MTA (Dentsply). After 1-day, 1-week, and 1-month Dulbecco's phosphate-buffered saline (DPBS) storage, the specimens were cross-sectioned perpendicular to the cement-dentin interface. The interfaces were evaluated using micro-Raman (μRaman) spectroscopy and at a higher spatial resolution using field emission gun electron probe microanalysis (Feg-SEM/EPMA).
μRaman spectroscopy revealed the formation of a transition zone at the interface of both Biodentine (Septodont) and ProRoot MTA (Dentsply) with dentin, having an average thickness of, respectively, 7.5 ± 4.2 and 6.2 ± 5.4 μm, which however was not statistically different. No difference in interfacial ultrastructure and chemistry was found using μRaman spectroscopy between 1 day, 1 week, and 1 month DPBS-stored specimens. The observation of a transition zone at the cement-dentin interfaces contrasts with the EPMA data that revealed a sharper transition from cement to dentin. Again, no difference in interfacial ultrastructure and chemistry was found for different storage periods, with the exception of one 1 month DPBS-stored specimen prepared using Biodentine (Septodont). More specifically, EPMA revealed a gap of about 10-μm wide in the latter specimen that was filled up with newly formed calcium phosphate depositions.
Up to 1 month, the interaction of hydraulic calcium silicate cements investigated did not reveal ultrastructural or chemical changes at unaffected dentin with the exception of a calcium phosphate gap-filling property.
Hydraulic calcium silicate cements were found to fill gaps by calcium phosphate deposition, however, without conducting chemical changes to the adjacent dentin.
本研究旨在表征水硬性硅酸钙类水泥在牙本质处的化学相互作用。
在非龋坏的人类第三磨牙上制备I类洞型,并用Biodentine(Septodont公司)或ProRoot MTA(登士柏公司)进行充填。在储存于杜氏磷酸盐缓冲盐水(DPBS)1天、1周和1个月后,将标本垂直于水泥-牙本质界面进行切片。使用显微拉曼(μRaman)光谱对界面进行评估,并使用场发射枪电子探针微分析(Feg-SEM/EPMA)以更高的空间分辨率进行评估。
μRaman光谱显示,Biodentine(Septodont公司)和ProRoot MTA(登士柏公司)与牙本质的界面处均形成了过渡区,平均厚度分别为7.5±4.2和6.2±5.4μm,但二者无统计学差异。在储存于DPBS 1天、1周和1个月的标本之间,使用μRaman光谱未发现界面超微结构和化学性质存在差异。在水泥-牙本质界面观察到过渡区,这与EPMA数据形成对比,EPMA数据显示从水泥到牙本质的过渡更为明显。同样,除了一个使用Biodentine(Septodont公司)制备并储存于DPBS 1个月的标本外,不同储存期的界面超微结构和化学性质均未发现差异。更具体地说,EPMA显示后一个标本中有一个约10μm宽的间隙,其中充满了新形成的磷酸钙沉积物。
在长达1个月的时间里,所研究的水硬性硅酸钙类水泥与未受影响的牙本质之间的相互作用,除了具有磷酸钙间隙填充特性外,未显示出超微结构或化学变化。
发现水硬性硅酸钙类水泥可通过磷酸钙沉积填充间隙,但不会对相邻牙本质进行化学改变。