Suppr超能文献

量化脓毒症诊断、记录和编码方面的改善:住院年份对脓毒症诊断的边际因果效应。

Quantifying the improvement in sepsis diagnosis, documentation, and coding: the marginal causal effect of year of hospitalization on sepsis diagnosis.

作者信息

Jafarzadeh S Reza, Thomas Benjamin S, Marschall Jonas, Fraser Victoria J, Gill Jeff, Warren David K

机构信息

Department of Medicine, Washington University School of Medicine, St. Louis, MO.

Department of Medicine, Washington University School of Medicine, St. Louis, MO; Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI.

出版信息

Ann Epidemiol. 2016 Jan;26(1):66-70. doi: 10.1016/j.annepidem.2015.10.008. Epub 2015 Oct 28.

Abstract

PURPOSE

To quantify the coinciding improvement in the clinical diagnosis of sepsis, its documentation in the electronic health records, and subsequent medical coding of sepsis for billing purposes in recent years.

METHODS

We examined 98,267 hospitalizations in 66,208 patients who met systemic inflammatory response syndrome criteria at a tertiary care center from 2008 to 2012. We used g-computation to estimate the causal effect of the year of hospitalization on receiving an International Classification of Diseases, Ninth Revision, Clinical Modification discharge diagnosis code for sepsis by estimating changes in the probability of getting diagnosed and coded for sepsis during the study period.

RESULTS

When adjusted for demographics, Charlson-Deyo comorbidity index, blood culture frequency per hospitalization, and intensive care unit admission, the causal risk difference for receiving a discharge code for sepsis per 100 hospitalizations with systemic inflammatory response syndrome, had the hospitalization occurred in 2012, was estimated to be 3.9% (95% confidence interval [CI], 3.8%-4.0%), 3.4% (95% CI, 3.3%-3.5%), 2.2% (95% CI, 2.1%-2.3%), and 0.9% (95% CI, 0.8%-1.1%) from 2008 to 2011, respectively.

CONCLUSIONS

Patients with similar characteristics and risk factors had a higher of probability of getting diagnosed, documented, and coded for sepsis in 2012 than in previous years, which contributed to an apparent increase in sepsis incidence.

摘要

目的

量化近年来脓毒症临床诊断、电子健康记录中的记录以及后续用于计费目的的脓毒症医学编码方面的同步改善情况。

方法

我们检查了2008年至2012年期间在一家三级医疗中心符合全身炎症反应综合征标准的66208例患者的98267次住院情况。我们使用g计算法,通过估计研究期间脓毒症诊断和编码概率的变化,来评估住院年份对获得国际疾病分类第九版临床修订本脓毒症出院诊断编码的因果效应。

结果

在对人口统计学、查尔森 - 戴约合并症指数、每次住院的血培养频率以及重症监护病房入住情况进行调整后,每100例符合全身炎症反应综合征的住院患者中,若住院发生在2012年,获得脓毒症出院编码的因果风险差异估计分别为3.9%(95%置信区间[CI],3.8% - 4.0%)、2008年至2011年分别为3.4%(95%CI,3.3% - 3.5%)、2.2%(95%CI,2.1% - 2.3%)和0.9%(95%CI,0.8% - 1.1%)。

结论

具有相似特征和风险因素的患者在2012年比前几年被诊断、记录和编码为脓毒症的概率更高,这导致脓毒症发病率明显上升。

相似文献

2
Temporal trends in the systemic inflammatory response syndrome, sepsis, and medical coding of sepsis.
BMC Anesthesiol. 2015 Nov 24;15:169. doi: 10.1186/s12871-015-0148-z.
6
Comparing the validity of different ICD coding abstraction strategies for sepsis case identification in German claims data.
PLoS One. 2018 Jul 30;13(7):e0198847. doi: 10.1371/journal.pone.0198847. eCollection 2018.
7
Impact of the ICD-9-CM to ICD-10-CM transition on the incidence of severe maternal morbidity among delivery hospitalizations in the United States.
Am J Obstet Gynecol. 2021 Oct;225(4):422.e1-422.e11. doi: 10.1016/j.ajog.2021.03.036. Epub 2021 Apr 16.
8
Impact of Policies on the Rise in Sepsis Incidence, 2000-2010.
Clin Infect Dis. 2016 Mar 15;62(6):695-703. doi: 10.1093/cid/civ1019. Epub 2016 Jan 19.

引用本文的文献

4
Reasons for hospitalization and in-hospital mortality in adults with systemic sclerosis: Analysis of the National Inpatient Sample.
J Scleroderma Relat Disord. 2022 Oct;7(3):189-196. doi: 10.1177/23971983221083225. Epub 2022 May 11.
5
6
Measurement of Sepsis in a National Cohort Using Three Different Methods to Define Baseline Organ Function.
Ann Am Thorac Soc. 2021 Apr;18(4):648-655. doi: 10.1513/AnnalsATS.202009-1130OC.
8
Surveillance Strategies for Tracking Sepsis Incidence and Outcomes.
J Infect Dis. 2020 Jul 21;222(Suppl 2):S74-S83. doi: 10.1093/infdis/jiaa102.
9
Sepsis trends: increasing incidence and decreasing mortality, or changing denominator?
J Thorac Dis. 2020 Feb;12(Suppl 1):S89-S100. doi: 10.21037/jtd.2019.12.51.
10
Leveraging electronic health record data to improve sepsis surveillance.
BMJ Qual Saf. 2020 Sep;29(9):706-710. doi: 10.1136/bmjqs-2020-010847. Epub 2020 Feb 27.

本文引用的文献

1
Mixed-Effects Logistic Regression Models for Indirectly Observed Discrete Outcome Variables.
Multivariate Behav Res. 2005;40(3):281-301. doi: 10.1207/s15327906mbr4003_1.
2
Systemic inflammatory response syndrome criteria in defining severe sepsis.
N Engl J Med. 2015 Apr 23;372(17):1629-38. doi: 10.1056/NEJMoa1415236. Epub 2015 Mar 17.
4
Deaths: leading causes for 2010.
Natl Vital Stat Rep. 2013 Dec 20;62(6):1-96.
5
Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis*.
Crit Care Med. 2014 Mar;42(3):625-31. doi: 10.1097/CCM.0000000000000026.
7
Benchmarking the incidence and mortality of severe sepsis in the United States.
Crit Care Med. 2013 May;41(5):1167-74. doi: 10.1097/CCM.0b013e31827c09f8.
8
Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012.
Crit Care Med. 2013 Feb;41(2):580-637. doi: 10.1097/CCM.0b013e31827e83af.
9
Population burden of long-term survivorship after severe sepsis in older Americans.
J Am Geriatr Soc. 2012 Jun;60(6):1070-7. doi: 10.1111/j.1532-5415.2012.03989.x. Epub 2012 May 29.
10
Drotrecogin alfa (activated) in adults with septic shock.
N Engl J Med. 2012 May 31;366(22):2055-64. doi: 10.1056/NEJMoa1202290. Epub 2012 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验