Diwan Saumya, Gandhi Vinay, Baidya Kayal Esha, Khanna Puneet, Mehndiratta Amit
Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
School of Medicine, Emory University, Atlanta, USA.
Intensive Care Med Exp. 2025 Jun 3;13(1):56. doi: 10.1186/s40635-025-00765-5.
Mortality in sepsis patients remains a challenging condition due to its complex nature. It is an even more prevalent health problem in low- and middle-income countries demanding costly treatment and management. This study proposes an explainable artificial intelligence-based approach towards mortality prediction for patients with sepsis admitted to intensive care unit (ICU).
A total of 500 patients (N = 500, male: female = 262:238, age = 45.96 ± 20.92 years) with sepsis were analyzed retrospectively. We utilize SHapley Additive exPlanations (SHAP) method to gain insights into the preliminary model's learnings regarding the wide array of demographic, clinical, radiological, and laboratory features. The clinical insights were used for feature selection to fetch the top t = 80% feature spread as well as to derive empirical findings from feature dependence plots which could find application in periphery hospital settings. Four machine learning algorithms, Random Forest, XGBoost, Extra Trees and Gradient Boosting classifiers were trained for the binary classification task (discharge from ICU and death in ICU) with the selected influential feature set.
The Extra Trees Classifier showed the best overall performance with AUROC score: 0.87 (95% CI 0.80-0.93), Accuracy: 0.79 (95% CI 0.71-0.86), F1 score: 0.78 (95% CI 0.69-0.86), Precision: 0.88 (95% CI 0.78-0.98) and Recall: 0.70 (95% CI 0.57-0.82). All four models perform significantly well on dataset with AUROC scores ranging from 0.81 (CI 0.73-0.89) to 0.87 (CI 0.80-0.93) and F1 scores ranging 0.74 (CI 0.64-0.83) to 0.78 (CI 0.69-0.86) on the hold-out test set and were stable over fivefold cross-validation prior to testing.
The proposed approach could provide preemptive estimations into prognostication and outcome prediction of patients with sepsis in low-resource settings. This will aid in clinical decision-making, resource allocation and research for new treatment modalities.
由于其复杂性,脓毒症患者的死亡率仍然是一个具有挑战性的情况。在低收入和中等收入国家,这是一个更为普遍的健康问题,需要昂贵的治疗和管理。本研究提出了一种基于可解释人工智能的方法,用于预测入住重症监护病房(ICU)的脓毒症患者的死亡率。
对500例脓毒症患者(N = 500,男:女 = 262:238,年龄 = 45.96 ± 20.92岁)进行回顾性分析。我们利用SHapley加性解释(SHAP)方法来深入了解初步模型对大量人口统计学、临床、放射学和实验室特征的学习情况。临床见解用于特征选择,以获取前t = 80%的特征分布,并从特征依赖图中得出实证结果,这些结果可应用于周边医院环境。使用选定的有影响力的特征集,对四种机器学习算法,即随机森林、XGBoost、极端随机树和梯度提升分类器进行二分类任务(从ICU出院和在ICU死亡)的训练。
极端随机树分类器表现出最佳的整体性能,曲线下面积(AUROC)得分:0.87(95%置信区间0.80 - 0.93),准确率:0.79(95%置信区间0.71 - 0.86),F1得分:0.78(95%置信区间0.69 - 0.86),精确率:0.88(95%置信区间0.78 - 0.98),召回率:0.70(95%置信区间0.57 - 0.82)。所有四个模型在数据集上的表现都非常显著,在保留测试集上的AUROC得分范围为0.81(置信区间0.73 - 0.89)至0.87(置信区间0.80 - 0.93),F1得分范围为0.74(置信区间0.64 - 0.83)至0.78(置信区间0.69 - 0.86),并且在测试前的五折交叉验证中是稳定的。
所提出的方法可以为资源匮乏环境下脓毒症患者的预后和结局预测提供前瞻性估计。这将有助于临床决策、资源分配以及新治疗方式的研究。