Suppr超能文献

表征蛋白酶特异性:我们需要多少种底物?

Characterizing Protease Specificity: How Many Substrates Do We Need?

作者信息

Schauperl Michael, Fuchs Julian E, Waldner Birgit J, Huber Roland G, Kramer Christian, Liedl Klaus R

机构信息

Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Tyrol, Austria.

出版信息

PLoS One. 2015 Nov 11;10(11):e0142658. doi: 10.1371/journal.pone.0142658. eCollection 2015.

Abstract

Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points). Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4') with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design.

摘要

通过基于信息熵的方法计算裂解熵,能够对蛋白酶底物特异性进行量化、映射和比较。该指标本质上取决于实验确定的底物数量(数据点)。因此,对其数值稳定性进行统计分析对于估计基于有限数量底物来评估特异性时所产生的系统误差至关重要。在本论文中,我们展示了估计裂解熵不确定性的数学基础。利用实验裂解数据和模拟的极端情况来计算裂解熵集。通过分析其背后的数学原理并应用统计工具,发现该指标与1/n存在线性关系。这使我们能够将这些值外推至无限数量的样本,并估计误差。通过分析误差发现,对于一种具有5%不确定性的蛋白酶(S4 - S4'),要从氨基酸变异性方面表征底物特异性,至少需要30个底物。因此,我们鼓励蛋白酶领域的实验研究人员记录新型蛋白酶的特异性谱,目标是鉴定至少30种具有最大序列多样性的肽底物。我们期望对蛋白酶特异性进行全面表征有助于阐明蛋白酶的生物学功能,并辅助合理的药物设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e4a/4641643/3d9800acd78d/pone.0142658.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验