Shaw Rahul, Kundu Sudip
Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 APC Road, Kolkata 700009, India.
J Biosci. 2015 Oct;40(4):819-28. doi: 10.1007/s12038-015-9563-z.
Due to socio-economic reasons, it is essential to design efficient stress-tolerant, more nutritious, high yielding rice varieties. A systematic understanding of the rice cellular metabolism is essential for this purpose. Here, we analyse a genome-scale metabolic model of rice leaf using Flux Balance Analysis to investigate whether it has potential metabolic flexibility to increase the biosynthesis of any of the biomass components. We initially simulate the metabolic responses under an objective to maximize the biomass components. Using the estimated maximum value of biomass synthesis as a constraint, we further simulate the metabolic responses optimizing the cellular economy. Depending on the physiological conditions of a cell, the transport capacities of intracellular transporters (ICTs) can vary. To mimic this physiological state, we randomly vary the ICTs' transport capacities and investigate their effects. The results show that the rice leaf has the potential to increase glycine and starch in a wide range depending on the ICTs' transport capacities. The predicted biosynthesis pathways vary slightly at the two different optimization conditions. With the constraint of biomass composition, the cell also has the metabolic plasticity to fix a wide range of carbon-nitrogen ratio.
由于社会经济原因,设计高效的耐胁迫、更具营养且高产的水稻品种至关重要。为此,对水稻细胞代谢进行系统的了解必不可少。在此,我们使用通量平衡分析来分析水稻叶片的全基因组规模代谢模型,以研究其是否具有增加任何生物量组分生物合成的潜在代谢灵活性。我们首先在最大化生物量组分的目标下模拟代谢响应。以估计的生物量合成最大值作为约束条件,我们进一步模拟优化细胞经济性的代谢响应。根据细胞的生理条件,细胞内转运蛋白(ICTs)的转运能力可能会有所不同。为模拟这种生理状态,我们随机改变ICTs的转运能力并研究其影响。结果表明,水稻叶片有潜力根据ICTs的转运能力在很大范围内增加甘氨酸和淀粉含量。在两种不同的优化条件下,预测的生物合成途径略有不同。在生物量组成的约束下,细胞也具有固定广泛碳氮比的代谢可塑性。