Suppr超能文献

通过系统生物学的群落方法获得的酵母代谢网络共识重建。

A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology.

作者信息

Herrgård Markus J, Swainston Neil, Dobson Paul, Dunn Warwick B, Arga K Yalçin, Arvas Mikko, Blüthgen Nils, Borger Simon, Costenoble Roeland, Heinemann Matthias, Hucka Michael, Le Novère Nicolas, Li Peter, Liebermeister Wolfram, Mo Monica L, Oliveira Ana Paula, Petranovic Dina, Pettifer Stephen, Simeonidis Evangelos, Smallbone Kieran, Spasić Irena, Weichart Dieter, Brent Roger, Broomhead David S, Westerhoff Hans V, Kirdar Betül, Penttilä Merja, Klipp Edda, Palsson Bernhard Ø, Sauer Uwe, Oliver Stephen G, Mendes Pedro, Nielsen Jens, Kell Douglas B

机构信息

Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412, USA.

出版信息

Nat Biotechnol. 2008 Oct;26(10):1155-60. doi: 10.1038/nbt1492.

Abstract

Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and content, and use different terminologies to describe the same chemical entities. This makes comparisons between them difficult and underscores the desirability of a consolidated metabolic network that collects and formalizes the 'community knowledge' of yeast metabolism. We describe how we have produced a consensus metabolic network reconstruction for S. cerevisiae. In drafting it, we placed special emphasis on referencing molecules to persistent databases or using database-independent forms, such as SMILES or InChI strings, as this permits their chemical structure to be represented unambiguously and in a manner that permits automated reasoning. The reconstruction is readily available via a publicly accessible database and in the Systems Biology Markup Language (http://www.comp-sys-bio.org/yeastnet). It can be maintained as a resource that serves as a common denominator for studying the systems biology of yeast. Similar strategies should benefit communities studying genome-scale metabolic networks of other organisms.

摘要

基因组数据允许对代谢网络重建进行大规模的人工或半自动组装,这些重建提供了高度精确的特定生物体知识库。尽管有几个基因组规模的网络重建描述了酿酒酵母的代谢,但它们在范围和内容上存在差异,并且使用不同的术语来描述相同的化学实体。这使得它们之间的比较变得困难,并突出了一个整合代谢网络的必要性,该网络收集并整理酵母代谢的“群体知识”。我们描述了我们如何为酿酒酵母构建一个共识代谢网络重建。在起草过程中,我们特别强调将分子引用到持久数据库或使用与数据库无关的形式,如SMILES或InChI字符串,因为这允许它们的化学结构以明确且能进行自动推理的方式表示。该重建可通过一个公开访问的数据库以及以系统生物学标记语言(http://www.comp-sys-bio.org/yeastnet)获取。它可以作为一种资源进行维护,作为研究酵母系统生物学的一个共同标准。类似的策略应该会使研究其他生物体基因组规模代谢网络的群体受益。

相似文献

2
Further developments towards a genome-scale metabolic model of yeast.
BMC Syst Biol. 2010 Oct 28;4:145. doi: 10.1186/1752-0509-4-145.
3
PathSys: integrating molecular interaction graphs for systems biology.
BMC Bioinformatics. 2006 Feb 7;7:55. doi: 10.1186/1471-2105-7-55.
5
YeastNet v3: a public database of data-specific and integrated functional gene networks for Saccharomyces cerevisiae.
Nucleic Acids Res. 2014 Jan;42(Database issue):D731-6. doi: 10.1093/nar/gkt981. Epub 2013 Oct 27.
6
Yeast 5 - an expanded reconstruction of the Saccharomyces cerevisiae metabolic network.
BMC Syst Biol. 2012 Jun 4;6:55. doi: 10.1186/1752-0509-6-55.
7
Towards a genome-scale kinetic model of cellular metabolism.
BMC Syst Biol. 2010 Jan 28;4:6. doi: 10.1186/1752-0509-4-6.
10
Yeast9: a consensus genome-scale metabolic model for S. cerevisiae curated by the community.
Mol Syst Biol. 2024 Oct;20(10):1134-1150. doi: 10.1038/s44320-024-00060-7. Epub 2024 Aug 12.

引用本文的文献

2
CLAIRE: a contrastive learning-based predictor for EC number of chemical reactions.
J Cheminform. 2025 Jan 7;17(1):2. doi: 10.1186/s13321-024-00944-8.
4
Yeast9: a consensus genome-scale metabolic model for S. cerevisiae curated by the community.
Mol Syst Biol. 2024 Oct;20(10):1134-1150. doi: 10.1038/s44320-024-00060-7. Epub 2024 Aug 12.
6
Data integration strategies for whole-cell modeling.
FEMS Yeast Res. 2024 Jan 9;24. doi: 10.1093/femsyr/foae011.
7
Cardinality optimization in constraint-based modelling: application to human metabolism.
Bioinformatics. 2023 Sep 2;39(9). doi: 10.1093/bioinformatics/btad450.
8
Gear Shifting in Biological Energy Transduction.
Entropy (Basel). 2023 Jun 28;25(7):993. doi: 10.3390/e25070993.
9
Two-way communication between cell cycle and metabolism in budding yeast: what do we know?
Front Microbiol. 2023 Jun 15;14:1187304. doi: 10.3389/fmicb.2023.1187304. eCollection 2023.
10
Standards, dissemination, and best practices in systems biology.
Curr Opin Biotechnol. 2023 Jun;81:102922. doi: 10.1016/j.copbio.2023.102922. Epub 2023 Mar 31.

本文引用的文献

1
The Montagues and the Capulets.
Comp Funct Genomics. 2004;5(8):623-32. doi: 10.1002/cfg.442.
2
Internet-based tools for communication and collaboration in chemistry.
Drug Discov Today. 2008 Jun;13(11-12):502-6. doi: 10.1016/j.drudis.2008.03.015. Epub 2008 May 9.
3
A perspective of publicly accessible/open-access chemistry databases.
Drug Discov Today. 2008 Jun;13(11-12):495-501. doi: 10.1016/j.drudis.2008.03.017. Epub 2008 May 15.
4
Facilitating the development of controlled vocabularies for metabolomics technologies with text mining.
BMC Bioinformatics. 2008 Apr 29;9 Suppl 5(Suppl 5):S5. doi: 10.1186/1471-2105-9-S5-S5.
5
Using a logical model to predict the growth of yeast.
BMC Bioinformatics. 2008 Feb 12;9:97. doi: 10.1186/1471-2105-9-97.
6
LibSBML: an API library for SBML.
Bioinformatics. 2008 Mar 15;24(6):880-1. doi: 10.1093/bioinformatics/btn051. Epub 2008 Feb 5.
8
Automated manipulation of systems biology models using libSBML within Taverna workflows.
Bioinformatics. 2008 Jan 15;24(2):287-9. doi: 10.1093/bioinformatics/btm578. Epub 2007 Dec 1.
9
The universal protein resource (UniProt).
Nucleic Acids Res. 2008 Jan;36(Database issue):D190-5. doi: 10.1093/nar/gkm895. Epub 2007 Nov 27.
10
The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases.
Nucleic Acids Res. 2008 Jan;36(Database issue):D623-31. doi: 10.1093/nar/gkm900. Epub 2007 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验