Solon A P, Tailleur J
Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, F-75205 Paris, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042119. doi: 10.1103/PhysRevE.92.042119. Epub 2015 Oct 8.
We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges from the spontaneous breaking of a discrete symmetry. On a two-dimensional lattice, active particles undergo a diffusion biased in one of two possible directions (left and right) and align ferromagnetically their direction of motion, hence yielding a minimal flocking model with discrete rotational symmetry. We show that the transition to collective motion amounts in this model to a bona fide liquid-gas phase transition in the canonical ensemble. The phase diagram in the density-velocity parameter plane has a critical point at zero velocity which belongs to the Ising universality class. In the density-temperature "canonical" ensemble, the usual critical point of the equilibrium liquid-gas transition is sent to infinite density because the different symmetries between liquid and gas phases preclude a supercritical region. We build a continuum theory which reproduces qualitatively the behavior of the microscopic model. In particular, we predict analytically the shapes of the phase diagrams in the vicinity of the critical points, the binodal and spinodal densities at coexistence, and the speeds and shapes of the phase-separated profiles.
我们详细研究了活性伊辛模型,这是一种随机晶格气体,其中集体运动源于离散对称性的自发破缺。在二维晶格上,活性粒子在两个可能方向(左和右)之一上进行有偏扩散,并使其运动方向铁磁排列,从而产生具有离散旋转对称性的最小群聚模型。我们表明,在该模型中向集体运动的转变相当于正则系综中的真正液 - 气相变。密度 - 速度参数平面中的相图在零速度处有一个临界点,它属于伊辛普适类。在密度 - 温度“正则”系综中,平衡液 - 气转变的通常临界点被移至无限密度,因为液相和气相之间的不同对称性排除了超临界区域。我们构建了一个连续统理论,定性地再现了微观模型的行为。特别是,我们解析地预测了临界点附近相图的形状、共存时的双节线和旋节线密度,以及相分离轮廓的速度和形状。