Iacovacci Jacopo, Wu Zhihao, Bianconi Ginestra
School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom.
School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042806. doi: 10.1103/PhysRevE.92.042806. Epub 2015 Oct 9.
Multiplex networks describe a large variety of complex systems, whose elements (nodes) can be connected by different types of interactions forming different layers (networks) of the multiplex. Multiplex networks include social networks, transportation networks, or biological networks in the cell or in the brain. Extracting relevant information from these networks is of crucial importance for solving challenging inference problems and for characterizing the multiplex networks microscopic and mesoscopic structure. Here we propose an information theory method to extract the network between the layers of multiplex data sets, forming a "network of networks." We build an indicator function, based on the entropy of network ensembles, to characterize the mesoscopic similarities between the layers of a multiplex network, and we use clustering techniques to characterize the communities present in this network of networks. We apply the proposed method to study the Multiplex Collaboration Network formed by scientists collaborating on different subjects and publishing in the American Physical Society journals. The analysis of this data set reveals the interplay between the collaboration networks and the organization of knowledge in physics.
多重网络描述了各种各样的复杂系统,其元素(节点)可以通过不同类型的相互作用相连,从而形成多重网络的不同层次(网络)。多重网络包括社交网络、交通网络,以及细胞或大脑中的生物网络。从这些网络中提取相关信息对于解决具有挑战性的推理问题以及刻画多重网络的微观和介观结构至关重要。在此,我们提出一种信息论方法,用于提取多重数据集各层之间的网络,从而形成一个“网络的网络”。我们基于网络系综的熵构建一个指标函数,以刻画多重网络各层之间的介观相似性,并使用聚类技术来刻画这个网络的网络中存在的群落。我们应用所提出的方法来研究由在不同主题上合作并在美国物理学会期刊上发表论文的科学家所形成的多重合作网络。对这个数据集的分析揭示了合作网络与物理学知识组织之间的相互作用。