Bezekci B, Idris I, Simitev R D, Biktashev V N
College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom.
Mathematical Sciences, Bayero University, Kano, Nigeria.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042917. doi: 10.1103/PhysRevE.92.042917. Epub 2015 Oct 19.
We consider the problem of ignition of propagating waves in one-dimensional bistable or excitable systems by an instantaneous spatially extended stimulus. Earlier we proposed a method [I. Idris and V. N. Biktashev, Phys. Rev. Lett. 101, 244101 (2008)] for analytical description of the threshold conditions based on an approximation of the (center-)stable manifold of a certain critical solution. Here we generalize this method to address a wider class of excitable systems, such as multicomponent reaction-diffusion systems and systems with non-self-adjoint linearized operators, including systems with moving critical fronts and pulses. We also explore an extension of this method from a linear to a quadratic approximation of the (center-)stable manifold, resulting in some cases in a significant increase in accuracy. The applicability of the approach is demonstrated on five test problems ranging from archetypal examples such as the Zeldovich-Frank-Kamenetsky equation to near realistic examples such as the Beeler-Reuter model of cardiac excitation. While the method is analytical in nature, it is recognized that essential ingredients of the theory can be calculated explicitly only in exceptional cases, so we also describe methods suitable for calculating these ingredients numerically.
我们考虑通过瞬时空间扩展刺激在一维双稳或可激发系统中传播波的点火问题。早些时候,我们提出了一种方法[I. 伊德里斯和V. N. 比克塔舍夫,《物理评论快报》101, 244101 (2008)],用于基于特定临界解的(中心)稳定流形的近似来解析描述阈值条件。在此,我们将此方法推广到更广泛的一类可激发系统,例如多组分反应扩散系统和具有非自伴线性化算子的系统,包括具有移动临界前沿和脉冲的系统。我们还探索了将此方法从(中心)稳定流形的线性近似扩展到二次近似,在某些情况下会导致精度显著提高。该方法的适用性在五个测试问题上得到了证明,范围从诸如泽尔多维奇 - 弗兰克 - 卡梅涅茨基方程这样的典型例子到诸如心脏兴奋的比勒 - 罗伊特模型这样接近实际的例子。虽然该方法本质上是解析的,但人们认识到该理论的基本要素仅在特殊情况下才能明确计算,因此我们还描述了适用于数值计算这些要素的方法。