Suppr超能文献

布尔模型中形态与传输之间的直接关系。

Direct relations between morphology and transport in Boolean models.

作者信息

Scholz Christian, Wirner Frank, Klatt Michael A, Hirneise Daniel, Schröder-Turk Gerd E, Mecke Klaus, Bechinger Clemens

机构信息

2. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.

Institut für Multiskalensimulation, Nägelsbachstraße 49b, Friedrich-Alexander Universität Erlangen-Nürnberg, 91052 Erlangen, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):043023. doi: 10.1103/PhysRevE.92.043023. Epub 2015 Oct 30.

Abstract

We study the relation of permeability and morphology for porous structures composed of randomly placed overlapping circular or elliptical grains, so-called Boolean models. Microfluidic experiments and lattice Boltzmann simulations allow us to evaluate a power-law relation between the Euler characteristic of the conducting phase and its permeability. Moreover, this relation is so far only directly applicable to structures composed of overlapping grains where the grain density is known a priori. We develop a generalization to arbitrary structures modeled by Boolean models and characterized by Minkowski functionals. This generalization works well for the permeability of the void phase in systems with overlapping grains, but systematic deviations are found if the grain phase is transporting the fluid. In the latter case our analysis reveals a significant dependence on the spatial discretization of the porous structure, in particular the occurrence of single isolated pixels. To link the results to percolation theory we performed Monte Carlo simulations of the Euler characteristic of the open cluster, which reveals different regimes of applicability for our permeability-morphology relations close to and far away from the percolation threshold.

摘要

我们研究了由随机放置的重叠圆形或椭圆形颗粒组成的多孔结构(即所谓的布尔模型)的渗透率与形态之间的关系。微流体实验和格子玻尔兹曼模拟使我们能够评估导电相的欧拉特征与其渗透率之间的幂律关系。此外,到目前为止,这种关系仅直接适用于由重叠颗粒组成且颗粒密度事先已知的结构。我们对由布尔模型建模并由闵可夫斯基泛函表征的任意结构进行了推广。这种推广对于具有重叠颗粒的系统中孔隙相的渗透率效果良好,但如果颗粒相传输流体,则会发现系统偏差。在后一种情况下,我们的分析表明对多孔结构的空间离散化有显著依赖性,特别是单个孤立像素的出现。为了将结果与渗流理论联系起来,我们对开放簇的欧拉特征进行了蒙特卡罗模拟,这揭示了我们的渗透率 - 形态关系在接近和远离渗流阈值时不同的适用范围。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验