Suppr超能文献

通过形态学信息神经网络预测弹塑性多孔介质的压缩应力-应变行为。

Predicting compressive stress-strain behavior of elasto-plastic porous media via morphology-informed neural networks.

作者信息

Lindqwister W, Peloquin J, Dalton L E, Gall K, Veveakis M

机构信息

Department of Civil and Environmental Engineering, Duke University, Durham, USA.

Technische Universiteit Delft, Delft, Netherlands.

出版信息

Commun Eng. 2025 Apr 18;4(1):73. doi: 10.1038/s44172-025-00410-9.

Abstract

Porous media, ranging from bones to concrete and from batteries to architected lattices, pose difficult challenges in fully harnessing for engineering applications due to their complex and variable structures. Accurate and rapid assessment of their mechanical behavior is both challenging and essential, and traditional methods such as destructive testing and finite element analysis can be costly, computationally demanding, and time consuming. Machine learning (ML) offers a promising alternative for predicting mechanical behavior by leveraging data-driven correlations. However, with such structural complexity and diverse morphology among porous media, the question becomes how to effectively characterize these materials to provide robust feature spaces for ML that are descriptive, succinct, and easily interpreted. Here, we developed an automated methodology to determine porous material strength. This method uses scalar morphological descriptors, known as Minkowski functionals, to describe the porous space. From there, we conduct uniaxial compression experiments for generating material stress-strain curves, and then train an ML model to predict the curves using said morphological descriptors. This framework seeks to expedite the analysis and prediction of stress-strain behavior in porous materials and lay the groundwork for future models that can predict mechanical behaviors beyond compression.

摘要

多孔介质,从骨骼到混凝土,从电池到架构晶格,由于其复杂多变的结构,在工程应用中充分利用时面临着艰巨挑战。准确快速地评估其力学行为既具有挑战性又至关重要,而诸如破坏性测试和有限元分析等传统方法可能成本高昂、计算量大且耗时。机器学习(ML)通过利用数据驱动的相关性为预测力学行为提供了一种有前景的替代方法。然而,鉴于多孔介质的结构复杂性和多样形态,问题就变成了如何有效地表征这些材料,为ML提供具有描述性、简洁且易于解释的强大特征空间。在此,我们开发了一种自动方法来确定多孔材料强度。该方法使用称为闵可夫斯基泛函的标量形态描述符来描述多孔空间。在此基础上,我们进行单轴压缩实验以生成材料应力 - 应变曲线,然后训练一个ML模型,使用上述形态描述符来预测这些曲线。该框架旨在加快多孔材料应力 - 应变行为的分析和预测,并为未来能够预测除压缩之外力学行为的模型奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6664/12008209/453ab533e360/44172_2025_410_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验