Suppr超能文献

基于连续和离散状态随机过程对偶关系的非线性卡尔曼滤波器。

Nonlinear Kalman filter based on duality relations between continuous and discrete-state stochastic processes.

作者信息

Ohkubo Jun

机构信息

Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama, 338-8570, Japan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):043302. doi: 10.1103/PhysRevE.92.043302. Epub 2015 Oct 6.

Abstract

An alternative application of duality relations of stochastic processes is demonstrated. Although conventional usages of the duality relations need analytical solutions for the dual processes, here I employ numerical solutions of the dual processes and investigate the usefulness. As a demonstration, estimation problems of hidden variables in stochastic differential equations are discussed. Employing algebraic probability theory, a little complicated birth-death process is derived from the stochastic differential equations, and an estimation method based on the ensemble Kalman filter is proposed. As a result, the possibility for making faster computational algorithms based on the duality concepts is shown.

摘要

展示了随机过程对偶关系的一种替代应用。尽管对偶关系的传统用法需要对偶过程的解析解,但在这里我采用对偶过程的数值解并研究其有用性。作为一个示例,讨论了随机微分方程中隐藏变量的估计问题。利用代数概率论,从随机微分方程推导出一个有点复杂的生灭过程,并提出了一种基于集合卡尔曼滤波器的估计方法。结果表明了基于对偶概念构建更快计算算法的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验