Bösch Fabian, Chikatamarla Shyam S, Karlin Ilya V
Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):043309. doi: 10.1103/PhysRevE.92.043309. Epub 2015 Oct 26.
We present three-dimensional realizations of a class of lattice Boltzmann models introduced recently by the authors [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014)] and review the role of the entropic stabilizer. Both coarse- and fine-grid simulations are addressed for the Kida vortex flow benchmark. We show that the outstanding numerical stability and performance is independent of a particular choice of the moment representation for high-Reynolds-number flows. We report accurate results for low-order moments for homogeneous isotropic decaying turbulence and second-order grid convergence for most assessed statistical quantities. It is demonstrated that all the three-dimensional lattice Boltzmann realizations considered herein converge to the familiar lattice Bhatnagar-Gross-Krook model when the resolution is increased. Moreover, thanks to the dynamic nature of the entropic stabilizer, the present model features less compressibility effects and maintains correct energy and enstrophy dissipation. The explicit and efficient nature of the present lattice Boltzmann method renders it a promising candidate for both engineering and scientific purposes for highly turbulent flows.
我们展示了作者最近提出的一类格子玻尔兹曼模型[I. V. 卡林、F. 博施和S. S. 奇卡塔马拉,《物理评论E》90, 031302(R) (2014)]的三维实现,并回顾了熵稳定剂的作用。针对木田涡旋流基准进行了粗网格和细网格模拟。我们表明,出色的数值稳定性和性能与高雷诺数流动的矩表示的特定选择无关。我们报告了均匀各向同性衰减湍流低阶矩的准确结果以及大多数评估统计量的二阶网格收敛性。结果表明,当分辨率提高时,本文考虑的所有三维格子玻尔兹曼实现都收敛到熟悉的格子 Bhatnagar-Gross-Krook 模型。此外,由于熵稳定剂的动态特性,本模型具有较小的压缩性效应,并保持正确的能量和涡量耗散。本格子玻尔兹曼方法的显式和高效特性使其成为用于高度湍流流动的工程和科学目的的有前途的候选方法。