Suppr超能文献

三维运动和变形几何的熵多松弛时间格子玻尔兹曼方法。

Entropic multirelaxation-time lattice Boltzmann method for moving and deforming geometries in three dimensions.

机构信息

Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.

出版信息

Phys Rev E. 2017 Jun;95(6-1):063306. doi: 10.1103/PhysRevE.95.063306. Epub 2017 Jun 13.

Abstract

Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work [B. Dorschner, S. Chikatamarla, F. Bösch, and I. Karlin, J. Comput. Phys. 295, 340 (2015)JCTPAH0021-999110.1016/j.jcp.2015.04.017] as well as for three-dimensional one-way coupled simulations of engine-type geometries in B. Dorschner, F. Bösch, S. Chikatamarla, K. Boulouchos, and I. Karlin [J. Fluid Mech. 801, 623 (2016)JFLSA70022-112010.1017/jfm.2016.448] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases, including two-way coupling between fluid and structure and then turbulence and deforming geometries. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil in the transitional regime at a Reynolds number of Re=40000 and, finally, to access the model's performance for deforming geometries, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.

摘要

熵格子玻尔兹曼方法已经被开发出来,以缓解晶格玻尔兹曼模型在欠解析模拟中的内在稳定性问题。在我们之前的工作中[B. Dorschner、S. Chikatamarla、F. Bösch 和 I. Karlin,J. Comput. Phys. 295, 340 (2015)JCTPAH0021-999110.1016/j.jcp.2015.04.017],该方法已被证明在二维层流基准流以及三维单向耦合发动机型几何结构的模拟中是可靠的,包括与结构的双向耦合以及湍流和变形几何结构。B. Dorschner、F. Bösch、S. Chikatamarla、K. Boulouchos 和 I. Karlin [J. Fluid Mech. 801, 623 (2016)JFLSA70022-112010.1017/jfm.2016.448]。本研究旨在充分利用熵格子玻尔兹曼模型在稳定性和准确性方面的优势,并将方法扩展到三维情况,包括流体和结构之间的双向耦合,然后是湍流和变形几何结构。为了涵盖这一系列广泛的应用,首先选择沉降球体的经典基准来验证一般的双向耦合算法。随着复杂性的增加,我们随后考虑了在雷诺数 Re=40000 下的过渡区中 SD7003 翼型的俯冲模拟,最后,为了评估模型在变形几何结构中的性能,我们进行了自推进鳗形游泳者的双向耦合模拟。这些模拟证实了新的流固相互作用格子玻尔兹曼算法在模拟工程相关流动方面的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验